AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Infant

Showing 201 to 210 of 878 articles

Clear Filters

Evaluation of T2W FLAIR MR image quality using artificial intelligence image reconstruction techniques in the pediatric brain.

Pediatric radiology
BACKGROUND: Artificial intelligence (AI) reconstruction techniques have the potential to improve image quality and decrease imaging time. However, these techniques must be assessed for safe and effective use in clinical practice.

Survival trend and outcome prediction for pediatric Hodgkin and non-Hodgkin lymphomas based on machine learning.

Clinical and experimental medicine
Pediatric Hodgkin and non-Hodgkin lymphomas differ from adult cases in biology and management, yet there is a lack of survival analysis tailored to pediatric lymphoma. We analyzed lymphoma data from 1975 to 2018, comparing survival trends between 7,8...

Cardiac patients' surgery outcome and associated factors in Ethiopia: application of machine learning.

BMC pediatrics
INTRODUCTION: Cardiovascular diseases are a class of heart and blood vessel-related illnesses. In Sub-Saharan Africa, including Ethiopia, preventable heart disease continues to be a significant factor, contrasting with its presence in developed natio...

Predicting Dental General Anesthesia Use among Children with Behavioral Health Conditions.

JDR clinical and translational research
OBJECTIVES: To evaluate how different data sources affect the performance of machine learning algorithms that predict dental general anesthesia use among children with behavioral health conditions.

RDLR: A Robust Deep Learning-Based Image Registration Method for Pediatric Retinal Images.

Journal of imaging informatics in medicine
Retinal diseases stand as a primary cause of childhood blindness. Analyzing the progression of these diseases requires close attention to lesion morphology and spatial information. Standard image registration methods fail to accurately reconstruct pe...

Prediction Models for Intravenous Immunoglobulin Non-Responders of Kawasaki Disease Using Machine Learning.

Clinical drug investigation
BACKGROUND AND OBJECTIVE: Intravenous immunoglobulin (IVIG) is a prominent therapeutic agent for Kawasaki disease (KD) that significantly reduces the incidence of coronary artery anomalies. Various methodologies, including machine learning, have been...

Optimizing vancomycin dosing in pediatrics: a machine learning approach to predict trough concentrations in children under four years of age.

International journal of clinical pharmacy
BACKGROUND: Vancomycin trough concentration is closely associated with clinical efficacy and toxicity. Predicting vancomycin trough concentrations in pediatric patients is challenging due to significant inter-individual variability and rapid physiolo...

Prediction of sustained opioid use in children and adolescents using machine learning.

British journal of anaesthesia
BACKGROUND: Opioid misuse in the paediatric population is understudied. This study aimed to develop a machine learning classifier to differentiate between occasional and sustained opioid users among children and adolescents in outpatient settings.

Exploring Heterogeneity in Cost-Effectiveness Using Machine Learning Methods: A Case Study Using the FIRST-ABC Trial.

Medical care
OBJECTIVE: The aim of this study was to explore heterogeneity in the cost-effectiveness of high-flow nasal cannula (HFNC) therapy compared with continuous positive airway pressure (CPAP) in children following extubation.

Identification of Multiclass Pediatric Low-Grade Neuroepithelial Tumor Molecular Subtype with ADC MR Imaging and Machine Learning.

AJNR. American journal of neuroradiology
BACKGROUND AND PURPOSE: Molecular biomarker identification increasingly influences the treatment planning of pediatric low-grade neuroepithelial tumors (PLGNTs). We aimed to develop and validate a radiomics-based ADC signature predictive of the molec...