AIMC Topic: Lipids

Clear Filters Showing 21 to 30 of 138 articles

Preparation and optimisation of solid lipid nanoparticles of rivaroxaban using artificial neural networks and response surface method.

Journal of microencapsulation
AIMS: This study aimed to improve rivaroxaban delivery by optimising solid lipid nanoparticles (SLN) for minimal mean diameter and maximal entrapment efficiency (EE), enhancing solubility, bioavailability, and the ability to cross the blood-brain bar...

Enhancing lipid identification in LC-HRMS data through machine learning-based retention time prediction.

Journal of chromatography. A
The comprehensive identification of peaks in untargeted lipidomics using LC-MS/MS remains a significant challenge. Confidence in lipid annotation can be greatly improved by integrating a highly accurate machine learning-based retention time predictio...

WALINET: A water and lipid identification convolutional neural network for nuisance signal removal in MR spectroscopic imaging.

Magnetic resonance in medicine
PURPOSE: Proton magnetic resonance spectroscopic imaging ( -MRSI) provides noninvasive spectral-spatial mapping of metabolism. However, long-standing problems in whole-brain -MRSI are spectral overlap of metabolite peaks with large lipid signal fro...

Antibacterial effects of thyme oil loaded solid lipid and chitosan nano-carriers against Salmonella Typhimurium and Escherichia coli as food preservatives.

PloS one
OBJECTIVES: Escherichia coli and Salmonella Typhimurium are frequent causes of foodborne illness affecting many people annually. In order to develop natural antimicrobial agents against these microorganisms, thyme oil (TO) was considered as active an...

Artificial intelligence-driven rational design of ionizable lipids for mRNA delivery.

Nature communications
Lipid nanoparticles (LNPs) have proven effective in mRNA delivery, as evidenced by COVID-19 vaccines. Its key ingredient, ionizable lipids, is traditionally optimized by inefficient and costly experimental screening. This study leverages artificial i...

LipoCLEAN: A Machine Learning Filter to Improve Untargeted Lipid Identification Confidence.

Analytical chemistry
In untargeted lipidomics experiments, putative lipid identifications generated by automated analysis software require substantial manual filtering to arrive at usable high-confidence data. However, identification software tools do not make full use o...

Harnessing artificial neural networks to model caffeine degradation by High-Yield biodiesel algae Desmodesmus pannonicus.

Bioresource technology
In this study, Desmodesmus pannonicus IITISM-DIX2, outperforming Chlorella sorokiniana IITISM-DIX3 in caffeine degradation, was used to develop an artificial neural network (ANN) model for predicting caffeine removal efficiency under varying pH, phot...

Combination of plasma-based lipidomics and machine learning provides a useful diagnostic tool for ovarian cancer.

Journal of pharmaceutical and biomedical analysis
Ovarian cancer (OC), the second leading cause of death among gynecological cancers, is often diagnosed at an advanced stage due to its asymptomatic nature at early stages. This study aimed to explore the diagnostic potential of plasma-based lipidomic...

Optimizing lipid nanoparticles for fetal gene delivery in vitro, ex vivo, and aided with machine learning.

Journal of controlled release : official journal of the Controlled Release Society
There is a clinical need to develop lipid nanoparticles (LNPs) to deliver congenital therapies to the fetus during pregnancy. The aim of these therapies is to restore normal fetal development and prevent irreversible conditions after birth. As a firs...

Review of machine learning for lipid nanoparticle formulation and process development.

Journal of pharmaceutical sciences
Lipid nanoparticles (LNPs) are a subset of pharmaceutical nanoparticulate formulations designed to encapsulate, stabilize, and deliver nucleic acid cargoes in vivo. Applications for LNPs include new interventions for genetic disorders, novel classes ...