AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Logistic Models

Showing 131 to 140 of 1118 articles

Clear Filters

An enhanced machine learning algorithm for type 2 diabetes prognosis with a detailed examination of Key correlates.

Scientific reports
This study aimed to construct a high-performance prediction and diagnosis model for type 2 diabetic retinopathy (DR) and identify key correlates of DR. This study utilized a cross-sectional dataset of 3,000 patients from the People's Liberation Army ...

Development of a machine learning tool to predict the risk of incident chronic kidney disease using health examination data.

Frontiers in public health
BACKGROUND: Chronic kidney disease (CKD) is characterized by a decreased glomerular filtration rate or renal injury (especially proteinuria) for at least 3 months. The early detection and treatment of CKD, a major global public health concern, before...

A novel meta learning based stacked approach for diagnosis of thyroid syndrome.

PloS one
Thyroid syndrome, a complex endocrine disorder, involves the dysregulation of the thyroid gland, impacting vital physiological functions. Common causes include autoimmune disorders, iodine deficiency, and genetic predispositions. The effects of thyro...

Developing a machine learning model with enhanced performance for predicting COVID-19 from patients presenting to the emergency room with acute respiratory symptoms.

IET systems biology
Artificial Intelligence is playing a crucial role in healthcare by enhancing decision-making and data analysis, particularly during the COVID-19 pandemic. This virus affects individuals across all age groups, but its impact is more severe on the elde...

Development and Validation of Machine Learning Models for Predicting Tumor Progression in OSCC.

Oral diseases
OBJECTIVES: Development of a prediction model using machine learning (ML) method for tumor progression in oral squamous cell carcinoma (OSCC) patients would provide risk estimation for individual patient outcomes.

Lung nodule classification using radiomics model trained on degraded SDCT images.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Low-dose computed tomography (LDCT) screening has shown promise in reducing lung cancer mortality; however, it suffers from high false positive rates and a scarcity of available annotated datasets. To overcome these challeng...

Development and validation of a machine-learning model for preoperative risk of gastric gastrointestinal stromal tumors.

Journal of gastrointestinal surgery : official journal of the Society for Surgery of the Alimentary Tract
BACKGROUND: Gastrointestinal stromal tumors (GISTs) have malignant potential, and treatment varies according to risk. However, no specific protocols exist for preoperative assessment of the malignant potential of gastric GISTs (gGISTs). This study ai...

Assessment of machine learning classifiers for predicting intraoperative blood transfusion in non-cardiac surgery.

Transfusion clinique et biologique : journal de la Societe francaise de transfusion sanguine
BACKGROUND: This study aimed to develop a machine learning classifier for predicting intraoperative blood transfusion in non-cardiac surgeries.

Fixing imbalanced binary classification: An asymmetric Bayesian learning approach.

PloS one
Most statistical and machine learning models used for binary data modeling and classification assume that the data are balanced. However, this assumption can lead to poor predictive performance and bias in parameter estimation when there is an imbala...

Comparing ensemble learning algorithms and severity of illness scoring systems in cardiac intensive care units: a retrospective study.

Einstein (Sao Paulo, Brazil)
BACKGROUND: Beatriz Nistal-Nuño designed a machine learning system type of ensemble learning for patients undergoing cardiac surgery and intensive care unit cardiology patients, based on sequences of cardiovascular physiological measurements and othe...