AIMC Topic: Lung Neoplasms

Clear Filters Showing 551 to 560 of 1668 articles

Identifying Pathological Subtypes of Brain Metastasis from Lung Cancer Using MRI-Based Deep Learning Approach: A Multicenter Study.

Journal of imaging informatics in medicine
The aim of this study was to investigate the feasibility of deep learning (DL) based on multiparametric MRI to differentiate the pathological subtypes of brain metastasis (BM) in lung cancer patients. This retrospective analysis collected 246 patient...

Artificial Intelligence-Guided Segmentation and Path Planning Software for Transthoracic Lung Biopsy.

Journal of vascular and interventional radiology : JVIR
PURPOSE: To validate the sensitivity and specificity of a 3-dimensional (3D) convolutional neural network (CNN) artificial intelligence (AI) software for lung lesion detection and to establish concordance between AI-generated needle paths and those u...

ADGAN: Attribute-Driven Generative Adversarial Network for Synthesis and Multiclass Classification of Pulmonary Nodules.

IEEE transactions on neural networks and learning systems
Lung cancer is the leading cause of cancer-related deaths worldwide. According to the American Cancer Society, early diagnosis of pulmonary nodules in computed tomography (CT) scans can improve the five-year survival rate up to 70% with proper treatm...

Clinical assessment of deep learning-based uncertainty maps in lung cancer segmentation.

Physics in medicine and biology
. Prior to radiation therapy planning, accurate delineation of gross tumour volume (GTVs) and organs at risk (OARs) is crucial. In the current clinical practice, tumour delineation is performed manually by radiation oncologists, which is time-consumi...

Explainable deep learning-based survival prediction for non-small cell lung cancer patients undergoing radical radiotherapy.

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
BACKGROUND AND PURPOSE: Survival is frequently assessed using Cox proportional hazards (CPH) regression; however, CPH may be too simplistic as it assumes a linear relationship between covariables and the outcome. Alternative, non-linear machine learn...

Could the underlying biological basis of prognostic radiomics and deep learning signatures be explored in patients with lung cancer? A systematic review.

European journal of radiology
OBJECTIVES: To summarize the underlying biological correlation of prognostic radiomics and deep learning signatures in patients with lung cancer and evaluate the quality of available studies.

Computer-aided diagnosis of distal metastasis in non-small cell lung cancer by low-dose CT based radiomics and deep learning signatures.

La Radiologia medica
BACKGROUND: This study aimed to develop and validate radiomics and deep learning (DL) signatures for predicting distal metastasis (DM) of non-small cell lung cancer (NSCLC) in low-dose computed tomography (LDCT).

Predicting occult lymph node metastasis in solid-predominantly invasive lung adenocarcinoma across multiple centers using radiomics-deep learning fusion model.

Cancer imaging : the official publication of the International Cancer Imaging Society
BACKGROUND: In solid-predominantly invasive lung adenocarcinoma (SPILAC), occult lymph node metastasis (OLNM) is pivotal for determining treatment strategies. This study seeks to develop and validate a fusion model combining radiomics and deep learni...

Inter-fractional portability of deep learning models for lung target tracking on cine imaging acquired in MRI-guided radiotherapy.

Physical and engineering sciences in medicine
MRI-guided radiotherapy systems enable beam gating by tracking the target on planar, two-dimensional cine images acquired during treatment. This study aims to evaluate how deep-learning (DL) models for target tracking that are trained on data from on...

Using Vision Transformer for high robustness and generalization in predicting EGFR mutation status in lung adenocarcinoma.

Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico
BACKGROUND: Lung adenocarcinoma is a common cause of cancer-related deaths worldwide, and accurate EGFR genotyping is crucial for optimal treatment outcomes. Conventional methods for identifying the EGFR genotype have several limitations. Therefore, ...