AIM: To compare the performance and reading time of different readers using automatic artificial intelligence (AI)-powered computer-aided detection (CAD) to detect lung nodules in different reading modes.
Background Accurate estimation of the malignancy risk of pulmonary nodules at chest CT is crucial for optimizing management in lung cancer screening. Purpose To develop and validate a deep learning (DL) algorithm for malignancy risk estimation of pul...
Few studies have addressed radiomics based differentiation of Glioblastoma (GBM) and intracranial metastatic disease (IMD). However, the effect of different tumor masks, comparison of single versus multiparametric MRI (mp-MRI) or select combination o...
Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
May 15, 2021
Lymph node metastasis (LNM) identification is the most clinically important tasks related to survival and recurrence from lung cancer. However, the preoperative prediction of nodal metastasis remains a challenge to determine surgical plans and pretre...
AIM: To evaluate the role that artificial intelligence (AI) could play in assisting radiologists as the first reader of chest radiographs (CXRs), to increase the accuracy and efficiency of lung cancer diagnosis by flagging positive cases before passi...
BACKGROUND: Functional lung MRI techniques are usually associated with time-consuming post-processing, where manual lung segmentation represents the most cumbersome part. The aim of this study was to investigate whether deep learning-based segmentati...
Lung cancer is a leading cause of cancer death in both men and women worldwide. The high mortality rate in lung cancer is in part due to late-stage diagnostics as well as spread of cancer-cells to organs and tissues by metastasis. Automated lung canc...
OBJECTIVE: To compare the performance of a deep learning (DL)-based method for diagnosing pulmonary nodules compared with radiologists' diagnostic approach in computed tomography (CT) of the chest.
Lung cancer patients with malignant pleural effusions (MPE) have a particular poor prognosis. It is crucial to distinguish MPE from benign pleural effusion (BPE). The present study aims to develop a rapid, convenient and economical diagnostic method ...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.