AIMC Topic: Lymph Nodes

Clear Filters Showing 31 to 40 of 383 articles

Prediction of Lymph Node Metastasis in Lung Cancer Using Deep Learning of Endobronchial Ultrasound Images With Size on CT and PET-CT Findings.

Respirology (Carlton, Vic.)
BACKGROUND AND OBJECTIVE: Echo features of lymph nodes (LNs) influence target selection during endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA). This study evaluates deep learning's diagnostic capabilities on EBUS images f...

Artificial intelligence-assisted precise preoperative prediction of lateral cervical lymph nodes metastasis in papillary thyroid carcinoma via a clinical-CT radiomic combined model.

International journal of surgery (London, England)
OBJECTIVES: This study aimed to develop an artificial intelligence-assisted model for the preoperative prediction of lateral cervical lymph node metastasis (LCLNM) in papillary thyroid carcinoma (PTC) using computed tomography (CT) radiomics, providi...

Machine learning-driven ultrasound radiomics for assessing axillary lymph node burden in breast cancer.

Frontiers in endocrinology
OBJECTIVE: This study explores the value of combining intratumoral and peritumoral radiomics features from ultrasound imaging with clinical characteristics to assess axillary lymph node burden in breast cancer patients.

Assessment of AI-based computational H&E staining versus chemical H&E staining for primary diagnosis in lymphomas: a brief interim report.

Journal of clinical pathology
Microscopic review of tissue sections is of foundational importance in pathology, yet the traditional chemistry-based histology laboratory methods are labour intensive, tissue destructive, poorly scalable to the evolving needs of precision medicine a...

Artificial intelligence can extract important features for diagnosing axillary lymph node metastasis in early breast cancer using contrast-enhanced ultrasonography.

Scientific reports
Contrast-enhanced ultrasound (CEUS) plays a pivotal role in the diagnosis of primary breast cancer and in axillary lymph node (ALN) metastasis. However, the imaging features that are clinically crucial for lymph node metastasis have not been fully el...

Automatic cervical lymph nodes detection and segmentation in heterogeneous computed tomography images using deep transfer learning.

Scientific reports
To develop a deep learning model using transfer learning for automatic detection and segmentation of neck lymph nodes (LNs) in computed tomography (CT) images, the study included 11,013 annotated LNs with a short-axis diameter ≥ 3 mm from 626 head an...

A radiopathomics model for predicting large-number cervical lymph node metastasis in clinical N0 papillary thyroid carcinoma.

European radiology
OBJECTIVES: This study aimed to develop a multimodal radiopathomics model utilising preoperative ultrasound (US) and fine-needle aspiration cytology (FNAC) to predict large-number cervical lymph node metastasis (CLNM) in patients with clinically lymp...

A radiomics model combining machine learning and neural networks for high-accuracy prediction of cervical lymph node metastasis on ultrasound of head and neck squamous cell carcinoma.

Oral surgery, oral medicine, oral pathology and oral radiology
OBJECTIVE: This study aimed to develop an ultrasound image-based radiomics model for diagnosing cervical lymph node (LN) metastasis in patients with head and neck squamous cell carcinoma (HNSCC) that shows higher accuracy than previous models.

Photoacoustic Imaging with Attention-Guided Deep Learning for Predicting Axillary Lymph Node Status in Breast Cancer.

Academic radiology
RATIONALE AND OBJECTIVES: Preoperative assessment of axillary lymph node (ALN) status is essential for breast cancer management. This study explores the use of photoacoustic (PA) imaging combined with attention-guided deep learning (DL) for precise p...