AIMC Topic:
Magnetic Resonance Imaging

Clear Filters Showing 1831 to 1840 of 6071 articles

Automated liver segmental volume ratio quantification on non-contrast T1-Vibe Dixon liver MRI using deep learning.

European journal of radiology
PURPOSE: To evaluate the effectiveness of automated liver segmental volume quantification and calculation of the liver segmental volume ratio (LSVR) on a non-contrast T1-vibe Dixon liver MRI sequence using a deep learning segmentation pipeline.

Federated Learning: A Cross-Institutional Feasibility Study of Deep Learning Based Intracranial Tumor Delineation Framework for Stereotactic Radiosurgery.

Journal of magnetic resonance imaging : JMRI
BACKGROUND: Deep learning-based segmentation algorithms usually required large or multi-institute data sets to improve the performance and ability of generalization. However, protecting patient privacy is a key concern in the multi-institutional stud...

A Deep Learning Approach to Using Wearable Seismocardiography (SCG) for Diagnosing Aortic Valve Stenosis and Predicting Aortic Hemodynamics Obtained by 4D Flow MRI.

Annals of biomedical engineering
In this paper, we explored the use of deep learning for the prediction of aortic flow metrics obtained using 4-dimensional (4D) flow magnetic resonance imaging (MRI) using wearable seismocardiography (SCG) devices. 4D flow MRI provides a comprehensiv...

Prediction of Retear After Arthroscopic Rotator Cuff Repair Based on Intraoperative Arthroscopic Images Using Deep Learning.

The American journal of sports medicine
BACKGROUND: It is challenging to predict retear after arthroscopic rotator cuff repair (ARCR). The usefulness of arthroscopic intraoperative images as predictors of the ARCR prognosis has not been analyzed.

Deep Learning Segmentation of the Nucleus Basalis of Meynert on 3T MRI.

AJNR. American journal of neuroradiology
BACKGROUND AND PURPOSE: The nucleus basalis of Meynert is a key subcortical structure that is important in arousal and cognition and has been explored as a deep brain stimulation target but is difficult to study due to its small size, variability amo...

Fetal MRI: what's new? A short review.

European radiology experimental
Fetal magnetic resonance imaging (fetal MRI) is usually performed as a second-level examination following routine ultrasound examination, generally exploiting morphological and diffusion MRI sequences. The objective of this review is to describe the ...

Preoperative Discrimination of CDKN2A/B Homozygous Deletion Status in Isocitrate Dehydrogenase-Mutant Astrocytoma: A Deep Learning-Based Radiomics Model Using MRI.

Journal of magnetic resonance imaging : JMRI
BACKGROUND: Cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) homozygous deletion has been verified as an independent and critical biomarker of negative prognosis and short survival in isocitrate dehydrogenase (IDH)-mutant astrocytoma. Therefore, non...

A novel MRI-based deep learning networks combined with attention mechanism for predicting CDKN2A/B homozygous deletion status in IDH-mutant astrocytoma.

European radiology
OBJECTIVES: To develop a high-accuracy MRI-based deep learning method for predicting cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) homozygous deletion status in isocitrate dehydrogenase (IDH)-mutant astrocytoma.

The Clinical Added Value of Breast Cancer Imaging Using Hybrid PET/MR Imaging.

Magnetic resonance imaging clinics of North America
Dedicated MR imaging is highly performant for the evaluation of the primary lesion and should regularly be added to whole-body PET/MR imaging for the initial staging. PET/MR imaging is highly sensitive for the detection of nodal involvement and could...

Developing and deploying deep learning models in brain magnetic resonance imaging: A review.

NMR in biomedicine
Magnetic resonance imaging (MRI) of the brain has benefited from deep learning (DL) to alleviate the burden on radiologists and MR technologists, and improve throughput. The easy accessibility of DL tools has resulted in a rapid increase of DL models...