AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Magnetic Resonance Imaging

Showing 61 to 70 of 5843 articles

Clear Filters

Enhancing Medical Image Classification through Transfer Learning and CLAHE Optimization.

Current medical imaging
INTRODUCTION: This paper examines the impact of transfer learning and CLAHE (Contrast Limited Adaptive Histogram Equalization) optimization on the classification of medical images, specifically brain images.

Enhanced Brain Functional Interaction Following BCI-Guided Supernumerary Robotic Finger Training Based on Sixth-Finger Motor Imagery.

IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
Supernumerary robotic finger (SRF) has shown unique advantages in the field of motor augmentation and rehabilitation, while the development of brain computer interface (BCI) technology has provided the possibility for direct control of SRF. However, ...

Multisequence 3-T Image Synthesis from 64-mT Low-Field-Strength MRI Using Generative Adversarial Networks in Multiple Sclerosis.

Radiology
Background Portable low-field-strength (64-mT) MRI scanners show promise for increasing access to neuroimaging for clinical and research purposes; however, these devices produce lower-quality images than conventional high-field-strength scanners. Pur...

Enhanced CT and MRI Focal Bone Tumor Classification with Machine Learning-based Stratification: A Multicenter Retrospective Study.

Radiology
Background Standardized bone tumor reporting is crucial for consistent, risk-aligned patient management. Current systems are based on expert consensus and/or lack multicenter validation. Purpose To evaluate a machine learning-based approach for diffe...

WMH-DualTasker: A Weakly Supervised Deep Learning Model for Automated White Matter Hyperintensities Segmentation and Visual Rating Prediction.

Human brain mapping
White matter hyperintensities (WMH) are neuroimaging markers linked to an elevated risk of cognitive decline. WMH severity is typically assessed via visual rating scales and through volumetric segmentation. While visual rating scales are commonly use...

Artificial intelligence-powered four-fold upscaling of human brain synthetic metabolite maps.

The Journal of international medical research
ObjectiveCompared with anatomical magnetic resonance imaging modalities, metabolite images from magnetic resonance spectroscopic imaging often suffer from low quality and detail due to their larger voxel sizes. Conventional interpolation techniques a...

Explainable deep stacking ensemble model for accurate and transparent brain tumor diagnosis.

Computers in biology and medicine
Early detection of brain tumors in MRI images is vital for improving treatment results. However, deep learning models face challenges like limited dataset diversity, class imbalance, and insufficient interpretability. Most studies rely on small, sing...

A multimodal MRI-based machine learning framework for classifying cognitive impairment in cerebral small vessel disease.

Scientific reports
The heterogeneity of cerebral small vessel disease (CSVD) with mild cognitive impairment (MCI) presents a challenge for diagnosis and classification. This study aims to propose a multimodal magnetic resonance imaging (MRI)-based machine learning fram...

Automatic Segmentation and Molecular Subtype Classification of Breast Cancer Using an MRI-based Deep Learning Framework.

Radiology. Imaging cancer
Purpose To build a deep learning framework using contrast-enhanced MRI for lesion segmentation and automatic molecular subtype classification in breast cancer. Materials and Methods This retrospective multicenter study included patients with biopsy-p...

Visualizing functional network connectivity differences using an explainable machine-learning method.

Physiological measurement
. Functional network connectivity (FNC) estimated from resting-state functional magnetic resonance imaging showed great information about the neural mechanism in different brain disorders. But previous research has mainly focused on standard statisti...