Background CT colonography does not enable definite differentiation between benign and premalignant colorectal polyps. Purpose To perform machine learning-based differentiation of benign and premalignant colorectal polyps detected with CT colonograph...
: Over the next 25 years, the global prevalence of diabetes is expected to grow to affect 700 million individuals. Consequently, an unprecedented number of patients will be at risk for vision loss from diabetic eye disease. This demand will almost ce...
This study aims to develop an artificial intelligence (AI)-based model to assist radiologists in pneumoconiosis screening and staging using chest radiographs. The model, based on chest radiographs, was developed using a training cohort and validated ...
Despite the increasing incidence and high morbidity associated with dementia, a simple, non-invasive, and inexpensive method of screening for dementia is yet to be discovered. This study aimed to examine whether artificial intelligence (AI) could dis...
Interval cancers are a commonly seen problem in organized breast cancer screening programs and their rate is measured for quality assurance. Artificial intelligence algorithms have been proposed to improve mammography sensitivity, in which case it is...
A major limitation of screening breast ultrasound (US) is a substantial number of false-positive biopsy. This study aimed to develop a deep learning-based computer-aided diagnosis (DL-CAD)-based diagnostic model to improve the differential diagnosis ...
Polycystic ovary syndrome (PCOS) is the main cause of anovulatory infertility and affects women throughout their lives. The specific diagnostic method is still under investigation. In the present study, we aimed to identify the metabolic tracks of th...
OBJECTIVE: To evaluate diabetic retinopathy (DR) screening via deep learning (DL) and trained human graders (HG) in a longitudinal cohort, as case spectrum shifts based on treatment referral and new-onset DR.