AI Medical Compendium Topic:
Middle Aged

Clear Filters Showing 761 to 770 of 14021 articles

A modular cage may prevent endplate damage and improve spinal deformity correction.

Clinical biomechanics (Bristol, Avon)
BACKGROUND: Anterior lumbar interbody fusion is performed to fuse pathological spinal segments, generally, with a monobloc cage inserted by impact forces. Recently developed three-part modular cages attempt to reduce the impact forces, minimize the d...

A cross-sectional study comparing machine learning and logistic regression techniques for predicting osteoporosis in a group at high risk of cardiovascular disease among old adults.

BMC geriatrics
BACKGROUND: Osteoporosis has become a significant public health concern that necessitates the application of appropriate techniques to calculate disease risk. Traditional methods, such as logistic regression,have been widely used to identify risk fac...

Machine learning-based risk prediction model for arteriovenous fistula stenosis.

European journal of medical research
BACKGROUND: Arteriovenous fistula stenosis is a common complication in hemodialysis patients, yet effective predictive tools are lacking. This study aims to develop an interpretable machine learning model for stenosis risk prediction.

Exploring non-invasive biomarkers for pulmonary nodule detection based on salivary microbiomics and machine learning algorithms.

Scientific reports
Microorganisms are one of the most promising biomarkers for cancer, and the relationship between microorganisms and lung cancer occurrence and development provides significant potential for pulmonary nodule (PN) diagnosis from a microbiological persp...

A vision transformer-convolutional neural network framework for decision-transparent dual-energy X-ray absorptiometry recommendations using chest low-dose CT.

International journal of medical informatics
OBJECTIVE: This study introduces an ensemble framework that integrates Vision Transformer (ViT) and Convolutional Neural Networks (CNN) models to leverage their complementary strengths, generating visualized and decision-transparent recommendations f...

Machine learning models for predicting metabolic dysfunction-associated steatotic liver disease prevalence using basic demographic and clinical characteristics.

Journal of translational medicine
BACKGROUND: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a global health concern that necessitates early screening and timely intervention to improve prognosis. The current diagnostic protocols for MASLD involve complex procedu...

Developing a high-performance AI model for spontaneous intracerebral hemorrhage mortality prediction using machine learning in ICU settings.

BMC medical informatics and decision making
BACKGROUND: Spontaneous intracerebral hemorrhage (SICH) is a devastating condition that significantly contributes to high mortality rates. This study aims to construct a mortality prediction model for patients with SICH using four various artificial ...

Development and evaluation of a machine learning model for osteoporosis risk prediction in Korean women.

BMC women's health
BACKGROUND: The aim of this study was to develop a machine learning (ML) model for classifying osteoporosis in Korean women based on a large-scale population cohort study. This study also aimed to assess ML model performance compared with traditional...