AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Mortality

Showing 11 to 20 of 68 articles

Clear Filters

Long-term mortality burden trends attributed to black carbon and PM from wildfire emissions across the continental USA from 2000 to 2020: a deep learning modelling study.

The Lancet. Planetary health
BACKGROUND: Long-term improvements in air quality and public health in the continental USA were disrupted over the past decade by increased fire emissions that potentially offset the decrease in anthropogenic emissions. This study aims to estimate tr...

Development, validation, and transportability of several machine-learned, non-exercise-based VO prediction models for older adults.

Journal of sport and health science
BACKGROUND: There exist few maximal oxygen uptake (VO) non-exercise-based prediction equations, fewer using machine learning (ML), and none specifically for older adults. Since direct measurement of VO is infeasible in large epidemiologic cohort stud...

Looking Beyond Mortality Prediction: Primary Care Physician Views of Patients' Palliative Care Needs Predicted by a Machine Learning Tool.

Applied clinical informatics
OBJECTIVES:  To assess primary care physicians' (PCPs) perception of the need for serious illness conversations (SIC) or other palliative care interventions in patients flagged by a machine learning tool for high 1-year mortality risk.

Machine learning prediction of one-year mortality after percutaneous coronary intervention in acute coronary syndrome patients.

International journal of cardiology
BACKGROUND: Machine learning (ML) models have the potential to accurately predict outcomes and offer novel insights into inter-variable correlations. In this study, we aimed to design ML models for the prediction of 1-year mortality after percutaneou...

Towards proactive palliative care in oncology: developing an explainable EHR-based machine learning model for mortality risk prediction.

BMC palliative care
BACKGROUND: Ex-ante identification of the last year in life facilitates a proactive palliative approach. Machine learning models trained on electronic health records (EHR) demonstrate promising performance in cancer prognostication. However, gaps in ...

Self-Supervised Machine Learning to Characterize Step Counts from Wrist-Worn Accelerometers in the UK Biobank.

Medicine and science in sports and exercise
PURPOSE: Step count is an intuitive measure of physical activity frequently quantified in health-related studies; however, accurate step counting is difficult in the free-living environment, with error routinely above 20% in wrist-worn devices agains...

Deep learning model for the prediction of all-cause mortality among long term care people in China: a prospective cohort study.

Scientific reports
This study aimed to develop a deep learning model to predict the risk stratification of all-cause death for older people with disability, providing guidance for long-term care plans. Based on the government-led long-term care insurance program in a p...

Deep learning-based prediction of one-year mortality in Finland is an accurate but unfair aging marker.

Nature aging
Short-term mortality risk, which is indicative of individual frailty, serves as a marker for aging. Previous age clocks focused on predicting either chronological age or longer-term mortality. Aging clocks predicting short-term mortality are lacking ...