AIMC Topic: Mortality

Clear Filters Showing 11 to 20 of 75 articles

Deep learning model for the prediction of all-cause mortality among long term care people in China: a prospective cohort study.

Scientific reports
This study aimed to develop a deep learning model to predict the risk stratification of all-cause death for older people with disability, providing guidance for long-term care plans. Based on the government-led long-term care insurance program in a p...

Deep learning-based prediction of one-year mortality in Finland is an accurate but unfair aging marker.

Nature aging
Short-term mortality risk, which is indicative of individual frailty, serves as a marker for aging. Previous age clocks focused on predicting either chronological age or longer-term mortality. Aging clocks predicting short-term mortality are lacking ...

Machine learning prediction of one-year mortality after percutaneous coronary intervention in acute coronary syndrome patients.

International journal of cardiology
BACKGROUND: Machine learning (ML) models have the potential to accurately predict outcomes and offer novel insights into inter-variable correlations. In this study, we aimed to design ML models for the prediction of 1-year mortality after percutaneou...

Towards proactive palliative care in oncology: developing an explainable EHR-based machine learning model for mortality risk prediction.

BMC palliative care
BACKGROUND: Ex-ante identification of the last year in life facilitates a proactive palliative approach. Machine learning models trained on electronic health records (EHR) demonstrate promising performance in cancer prognostication. However, gaps in ...

Self-Supervised Machine Learning to Characterize Step Counts from Wrist-Worn Accelerometers in the UK Biobank.

Medicine and science in sports and exercise
PURPOSE: Step count is an intuitive measure of physical activity frequently quantified in health-related studies; however, accurate step counting is difficult in the free-living environment, with error routinely above 20% in wrist-worn devices agains...

Looking Beyond Mortality Prediction: Primary Care Physician Views of Patients' Palliative Care Needs Predicted by a Machine Learning Tool.

Applied clinical informatics
OBJECTIVES:  To assess primary care physicians' (PCPs) perception of the need for serious illness conversations (SIC) or other palliative care interventions in patients flagged by a machine learning tool for high 1-year mortality risk.

Development, validation, and transportability of several machine-learned, non-exercise-based VO prediction models for older adults.

Journal of sport and health science
BACKGROUND: There exist few maximal oxygen uptake (VO) non-exercise-based prediction equations, fewer using machine learning (ML), and none specifically for older adults. Since direct measurement of VO is infeasible in large epidemiologic cohort stud...

Style-transfer counterfactual explanations: An application to mortality prevention of ICU patients.

Artificial intelligence in medicine
In recent years, machine learning methods have been rapidly adopted in the medical domain. However, current state-of-the-art medical mining methods usually produce opaque, black-box models. To address the lack of model transparency, substantial atten...