AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Multifactorial Inheritance

Showing 11 to 20 of 45 articles

Clear Filters

Polygenic modelling and machine learning approaches in pharmacogenomics: Importance in downstream analysis of genome-wide association study data.

British journal of clinical pharmacology
Genome-wide association studies (GWAS) have identified genetic variations associated with adverse drug effects in pharmacogenomics (PGx) research. However, interpreting the biological implications of these associations remains a challenge. This revie...

Ridge regression and deep learning models for genome-wide selection of complex traits in New Mexican Chile peppers.

BMC genomic data
BACKGROUND: Genomewide prediction estimates the genomic breeding values of selection candidates which can be utilized for population improvement and cultivar development. Ridge regression and deep learning-based selection models were implemented for ...

Epistatic Features and Machine Learning Improve Alzheimer's Disease Risk Prediction Over Polygenic Risk Scores.

Journal of Alzheimer's disease : JAD
BACKGROUND: Polygenic risk scores (PRS) are linear combinations of genetic markers weighted by effect size that are commonly used to predict disease risk. For complex heritable diseases such as late-onset Alzheimer's disease (LOAD), PRS models fail t...

Discrimination between healthy participants and people with panic disorder based on polygenic scores for psychiatric disorders and for intermediate phenotypes using machine learning.

The Australian and New Zealand journal of psychiatry
OBJECTIVE: Panic disorder is a modestly heritable condition. Currently, diagnosis is based only on clinical symptoms; identifying objective biomarkers and a more reliable diagnostic procedure is desirable. We investigated whether people with panic di...

Machine learning models for predicting blood pressure phenotypes by combining multiple polygenic risk scores.

Scientific reports
We construct non-linear machine learning (ML) prediction models for systolic and diastolic blood pressure (SBP, DBP) using demographic and clinical variables and polygenic risk scores (PRSs). We developed a two-model ensemble, consisting of a baselin...

AI-enhanced integration of genetic and medical imaging data for risk assessment of Type 2 diabetes.

Nature communications
Type 2 diabetes (T2D) presents a formidable global health challenge, highlighted by its escalating prevalence, underscoring the critical need for precision health strategies and early detection initiatives. Leveraging artificial intelligence, particu...

Innovative approaches to atrial fibrillation prediction: should polygenic scores and machine learning be implemented in clinical practice?

Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology
Atrial fibrillation (AF) prediction and screening are of important clinical interest because of the potential to prevent serious adverse events. Devices capable of detecting short episodes of arrhythmia are now widely available. Although it has recen...

Disease prediction with multi-omics and biomarkers empowers case-control genetic discoveries in the UK Biobank.

Nature genetics
The emergence of biobank-level datasets offers new opportunities to discover novel biomarkers and develop predictive algorithms for human disease. Here, we present an ensemble machine-learning framework (machine learning with phenotype associations, ...

A deep learning model for prediction of autism status using whole-exome sequencing data.

PLoS computational biology
Autism is a developmental disability. Research demonstrated that children with autism benefit from early diagnosis and early intervention. Genetic factors are considered major contributors to the development of autism. Machine learning (ML), includin...

Prediction of incident atrial fibrillation using deep learning, clinical models, and polygenic scores.

European heart journal
BACKGROUND AND AIMS: Deep learning applied to electrocardiograms (ECG-AI) is an emerging approach for predicting atrial fibrillation or flutter (AF). This study introduces an ECG-AI model developed and tested at a tertiary cardiac centre, comparing i...