AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Multimodal Imaging

Showing 51 to 60 of 248 articles

Clear Filters

Optimizing evaluation of endometrial receptivity in recurrent pregnancy loss: a preliminary investigation integrating radiomics from multimodal ultrasound via machine learning.

Frontiers in endocrinology
BACKGROUND: Recurrent pregnancy loss (RPL) frequently links to a prolonged endometrial receptivity (ER) window, leading to the implantation of non-viable embryos. Existing ER assessment methods face challenges in reliability and invasiveness. Radiomi...

Deep unfolding network with spatial alignment for multi-modal MRI reconstruction.

Medical image analysis
Multi-modal Magnetic Resonance Imaging (MRI) offers complementary diagnostic information, but some modalities are limited by the long scanning time. To accelerate the whole acquisition process, MRI reconstruction of one modality from highly under-sam...

A Meta-Learning Approach for Classifying Multimodal Retinal Images of Retinal Vein Occlusion With Limited Data.

Translational vision science & technology
PURPOSE: To propose and validate a meta-learning approach for detecting retinal vein occlusion (RVO) from multimodal images with only a few samples.

The application value of support vector machine model based on multimodal MRI in predicting IDH-1mutation and Ki-67 expression in glioma.

BMC medical imaging
PURPOSE: To investigate the application value of support vector machine (SVM) model based on diffusion-weighted imaging (DWI), dynamic contrast-enhanced (DCE) and amide proton transfer- weighted (APTW) imaging in predicting isocitrate dehydrogenase 1...

DeepASD: a deep adversarial-regularized graph learning method for ASD diagnosis with multimodal data.

Translational psychiatry
Autism Spectrum Disorder (ASD) is a prevalent neurological condition with multiple co-occurring comorbidities that seriously affect mental health. Precisely diagnosis of ASD is crucial to intervention and rehabilitation. A single modality may not ful...

Multimodal medical image fusion based on interval gradients and convolutional neural networks.

BMC medical imaging
Many image fusion methods have been proposed to leverage the advantages of functional and anatomical images while compensating for their shortcomings. These methods integrate functional and anatomical images while presenting physiological and metabol...

Non-invasive multimodal CT deep learning biomarker to predict pathological complete response of non-small cell lung cancer following neoadjuvant immunochemotherapy: a multicenter study.

Journal for immunotherapy of cancer
OBJECTIVES: Although neoadjuvant immunochemotherapy has been widely applied in non-small cell lung cancer (NSCLC), predicting treatment response remains a challenge. We used pretreatment multimodal CT to explore deep learning-based immunochemotherapy...

Assessment of multi-modal magnetic resonance imaging for glioma based on a deep learning reconstruction approach with the denoising method.

Acta radiologica (Stockholm, Sweden : 1987)
BACKGROUND: Deep learning reconstruction (DLR) with denoising has been reported as potentially improving the image quality of magnetic resonance imaging (MRI). Multi-modal MRI is a critical non-invasive method for tumor detection, surgery planning, a...

Multi-Sensor Learning Enables Information Transfer Across Different Sensory Data and Augments Multi-Modality Imaging.

IEEE transactions on pattern analysis and machine intelligence
Multi-modality imaging is widely used in clinical practice and biomedical research to gain a comprehensive understanding of an imaging subject. Currently, multi-modality imaging is accomplished by post hoc fusion of independently reconstructed images...

Cohort-Individual Cooperative Learning for Multimodal Cancer Survival Analysis.

IEEE transactions on medical imaging
Recently, we have witnessed impressive achievements in cancer survival analysis by integrating multimodal data, e.g., pathology images and genomic profiles. However, the heterogeneity and high dimensionality of these modalities pose significant chall...