AIMC Topic: Multiomics

Clear Filters Showing 41 to 50 of 232 articles

Development of disease diagnosis technology based on coattention cross-fusion of multiomics data.

Analytica chimica acta
BACKGROUND: Early diagnosis is vital for increasing the rates of curing diseases and patient survival in medicine. With the advancement of biotechnology, the types of bioomics data are increasing. The integration of multiomics data can provide more c...

Multi-Omics Deep-Learning Prediction of Homologous Recombination Deficiency-Like Phenotype Improved Risk Stratification and Guided Therapeutic Decisions in Gynecological Cancers.

IEEE journal of biomedical and health informatics
Homologous recombination deficiency (HRD) is a well-recognized important biomarker in determining the clinical benefits of platinum-based chemotherapy and PARP inhibitor therapy for patients diagnosed with gynecologic cancers. Accurate prediction of ...

Multi-omics analyses and machine learning prediction of oviductal responses in the presence of gametes and embryos.

eLife
The oviduct is the site of fertilization and preimplantation embryo development in mammals. Evidence suggests that gametes alter oviductal gene expression. To delineate the adaptive interactions between the oviduct and gamete/embryo, we performed a m...

Integrated multiomics analysis and machine learning refine neutrophil extracellular trap-related molecular subtypes and prognostic models for acute myeloid leukemia.

Frontiers in immunology
BACKGROUND: Neutrophil extracellular traps (NETs) play pivotal roles in various pathological processes. The formation of NETs is impaired in acute myeloid leukemia (AML), which can result in immunodeficiency and increased susceptibility to infection.

Multi-omics and single-cell analysis reveals machine learning-based pyrimidine metabolism-related signature in the prognosis of patients with lung adenocarcinoma.

International journal of medical sciences
Pyrimidine metabolism is a hallmark of tumor metabolic reprogramming, while its significance in the prognostic and therapeutic implications of patients with lung adenocarcinoma (LUAD) still remains unclear. In this study, an integrated framework of...

Multiple machine learning-based integrations of multi-omics data to identify molecular subtypes and construct a prognostic model for HNSCC.

Hereditas
BACKGROUND: Immunotherapy has introduced new breakthroughs in improving the survival of head and neck squamous cell carcinoma (HNSCC) patients, yet drug resistance remains a critical challenge. Developing personalized treatment strategies based on th...

Integrating multiomics analysis and machine learning to refine the molecular subtyping and prognostic analysis of stomach adenocarcinoma.

Scientific reports
Stomach adenocarcinoma (STAD) is a common malignancy with high heterogeneity and a lack of highly precise treatment options. We downloaded the multiomics data of STAD patients in The Cancer Genome Atlas (TCGA)-STAD cohort, which included mRNA, microR...

Unveiling the role of PANoptosis-related genes in breast cancer: an integrated study by multi-omics analysis and machine learning algorithms.

Breast cancer research and treatment
BACKGROUND: The heterogeneity of breast cancer (BC) necessitates the identification of novel subtypes and prognostic models to enhance patient stratification and treatment strategies. This study aims to identify novel BC subtypes based on PANoptosis-...

Perspective: Multiomics and Artificial Intelligence for Personalized Nutritional Management of Diabetes in Patients Undergoing Peritoneal Dialysis.

Advances in nutrition (Bethesda, Md.)
Managing diabetes in patients on peritoneal dialysis (PD) is challenging due to the combined effects of dietary glucose, glucose from dialysate, and other medical complications. Advances in technology that enable continuous biological data collection...