AIMC Topic: Mutation

Clear Filters Showing 541 to 550 of 652 articles

Building a Risk Scoring Model for ARDS in Lung Adenocarcinoma Patients Using Machine Learning Algorithms.

Journal of cellular and molecular medicine
Lung adenocarcinoma (LUAD), the predominant form of non-small-cell lung cancer, is frequently complicated by acute respiratory distress syndrome (ARDS), which increases mortality risks. Investigating the prognostic implications of ARDS-related genes ...

Raman-based machine-learning platform reveals unique metabolic differences between IDHmut and IDHwt glioma.

Neuro-oncology
BACKGROUND: Formalin-fixed, paraffin-embedded (FFPE) tissue slides are routinely used in cancer diagnosis, clinical decision-making, and stored in biobanks, but their utilization in Raman spectroscopy-based studies has been limited due to the backgro...

Deep learning-based analysis of EGFR mutation prevalence in lung adenocarcinoma H&E whole slide images.

The journal of pathology. Clinical research
EGFR mutations are a major prognostic factor in lung adenocarcinoma. However, current detection methods require sufficient samples and are costly. Deep learning is promising for mutation prediction in histopathological image analysis but has limitati...

Diffusion-weighted MRI precisely predicts telomerase reverse transcriptase promoter mutation status in World Health Organization grade IV gliomas using a residual convolutional neural network.

The British journal of radiology
OBJECTIVES: Telomerase reverse transcriptase promoter (pTERT) mutation status plays a key role in making decisions and predicting prognoses for patients with World Health Organization (WHO) grade IV glioma. This study was conducted to assess the valu...

Gene-Specific Machine Learning Models to Classify Driver Mutations in Clonal Hematopoiesis.

Cancer discovery
There is no general consensus on the set of mutations capable of driving the age-related clonal expansions in hematopoietic stem cells known as clonal hematopoiesis, and current variant classifications typically rely on rules derived from expert know...

Identification of Clonal Hematopoiesis Driver Mutations through In Silico Saturation Mutagenesis.

Cancer discovery
Clonal hematopoiesis (CH) is a phenomenon of clonal expansion of hematopoietic stem cells driven by somatic mutations affecting certain genes. Recently, CH has been linked to the development of hematologic malignancies, cardiovascular diseases, and o...

Machine learning enables pan-cancer identification of mutational hotspots at persistent CTCF binding sites.

Nucleic acids research
CCCTC-binding factor (CTCF) is an insulator protein that binds to a highly conserved DNA motif and facilitates regulation of three-dimensional (3D) nuclear architecture and transcription. CTCF binding sites (CTCF-BSs) reside in non-coding DNA and are...

Predicting tumor mutation burden and VHL mutation from renal cancer pathology slides with self-supervised deep learning.

Cancer medicine
BACKGROUND: Tumor mutation burden (TMB) and VHL mutation play a crucial role in the management of patients with clear cell renal cell carcinoma (ccRCC), such as guiding adjuvant chemotherapy and improving clinical outcomes. However, the time-consumin...

Protein multi-level structure feature-integrated deep learning method for mutational effect prediction.

Biotechnology journal
Through iterative rounds of mutation and selection, proteins can be engineered to enhance their desired biological functions. Nevertheless, identifying optimal mutation sites for directed evolution remains challenging due to the vastness of the prote...

DDMut-PPI: predicting effects of mutations on protein-protein interactions using graph-based deep learning.

Nucleic acids research
Protein-protein interactions (PPIs) play a vital role in cellular functions and are essential for therapeutic development and understanding diseases. However, current predictive tools often struggle to balance efficiency and precision in predicting t...