AIMC Topic: Nasopharyngeal Carcinoma

Clear Filters Showing 11 to 20 of 94 articles

A prognostic and predictive model based on deep learning to identify optimal candidates for intensity-modulated radiotherapy alone in patients with stage II nasopharyngeal carcinoma: A retrospective multicenter study.

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
PURPOSE: To develop and validate a prognostic and predictive model integrating deep learning MRI features and clinical information in patients with stage II nasopharyngeal carcinoma (NPC) to identify patients with a low risk of progression for whom i...

Weakly Supervised Classification for Nasopharyngeal Carcinoma With Transformer in Whole Slide Images.

IEEE journal of biomedical and health informatics
Pathological examination of nasopharyngeal carcinoma (NPC) is an indispensable factor for diagnosis, guiding clinical treatment and judging prognosis. Traditional and fully supervised NPC diagnosis algorithms require manual delineation of regions of ...

Self-supervised learning on dual-sequence magnetic resonance imaging for automatic segmentation of nasopharyngeal carcinoma.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Automating the segmentation of nasopharyngeal carcinoma (NPC) is crucial for therapeutic procedures but presents challenges given the hurdles in amassing extensively annotated datasets. Although previous studies have applied self-supervised learning ...

Generalizable Magnetic Resonance Imaging-based Nasopharyngeal Carcinoma Delineation: Bridging Gaps Across Multiple Centers and Raters With Active Learning.

International journal of radiation oncology, biology, physics
PURPOSE: To develop a deep learning method exploiting active learning and source-free domain adaptation for gross tumor volume delineation in nasopharyngeal carcinoma (NPC), addressing the variability and inaccuracy when deploying segmentation models...

A Stacked Multimodality Model Based on Functional MRI Features and Deep Learning Radiomics for Predicting the Early Response to Radiotherapy in Nasopharyngeal Carcinoma.

Academic radiology
BACKGROUND: This study aimed to construct and assess a comprehensive model that integrates MRI-derived deep learning radiomics, functional imaging (fMRI), and clinical indicators to predict early efficacy of radiotherapy in nasopharyngeal carcinoma (...

Transformer-Integrated Hybrid Convolutional Neural Network for Dose Prediction in Nasopharyngeal Carcinoma Radiotherapy.

Journal of imaging informatics in medicine
Radiotherapy is recognized as the major treatment of nasopharyngeal carcinoma. Rapid and accurate dose prediction can improve the efficiency of the treatment planning process and the quality of radiotherapy plans. Currently, deep learning-based metho...

Comparative evaluation of machine learning models in predicting overall survival for nasopharyngeal carcinoma using F-FDG PET-CT parameters.

Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico
PURPOSE: The objective of this study is to assess the prognostic efficacy of F-fluorodeoxyglucose (F-FDG) positron emission tomography/computed tomography (PET-CT) parameters in nasopharyngeal carcinoma (NPC) and identify the best machine learning (M...

Improving the performance of deep learning models in predicting and classifying gamma passing rates with discriminative features and a class balancing technique: a retrospective cohort study.

Radiation oncology (London, England)
BACKGROUND: The purpose of this study was to improve the deep learning (DL) model performance in predicting and classifying IMRT gamma passing rate (GPR) by using input features related to machine parameters and a class balancing technique.

Machine learning-derived prognostic signature for progression-free survival in non-metastatic nasopharyngeal carcinoma.

Head & neck
BACKGROUND: Early detection of high-risk nasopharyngeal carcinoma (NPC) recurrence is essential. We created a machine learning-derived prognostic signature (MLDPS) by combining three machine learning (ML) models to predict progression-free survival (...