AIMC Topic: Nasopharyngeal Carcinoma

Clear Filters Showing 11 to 20 of 101 articles

An interpretable machine learning model assists in predicting induction chemotherapy response and survival for locoregionally advanced nasopharyngeal carcinoma using MRI: a multicenter study.

European radiology
OBJECTIVES: To develop and validate an interpretable and generalized machine learning model using MRI for the individualized prediction of induction chemotherapy (ICT) response and survival in locoregionally advanced nasopharyngeal carcinoma (LANPC).

Deep learning based analysis of G3BP1 protein expression to predict the prognosis of nasopharyngeal carcinoma.

PloS one
BACKGROUND: Ras-GTPase-activating protein (GAP)-binding protein 1 (G3BP1) emerges as a pivotal oncogenic gene across various malignancies, notably including nasopharyngeal carcinoma (NPC). The use of automated image analysis tools for immunohistochem...

Exploring the influence of age on the causes of death in advanced nasopharyngeal carcinoma patients undergoing chemoradiotherapy using machine learning methods.

Scientific reports
The present study analyzed the impact of age on the causes of death (CODs) in patients with nasopharyngeal carcinoma (NPC) undergoing chemoradiotherapy (CRT) using machine learning approaches. A total of 2841 patients (1037 classified as older, ≥ 60 ...

Artificial Intelligence-Empowered Multistep Integrated Radiation Therapy Workflow for Nasopharyngeal Carcinoma.

International journal of radiation oncology, biology, physics
PURPOSE: To establish an artificial intelligence (AI)-empowered multistep integrated (MSI) radiation therapy (RT) workflow for patients with nasopharyngeal carcinoma (NPC) and evaluate its feasibility and clinical performance.

A prognostic and predictive model based on deep learning to identify optimal candidates for intensity-modulated radiotherapy alone in patients with stage II nasopharyngeal carcinoma: A retrospective multicenter study.

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
PURPOSE: To develop and validate a prognostic and predictive model integrating deep learning MRI features and clinical information in patients with stage II nasopharyngeal carcinoma (NPC) to identify patients with a low risk of progression for whom i...

Weakly Supervised Classification for Nasopharyngeal Carcinoma With Transformer in Whole Slide Images.

IEEE journal of biomedical and health informatics
Pathological examination of nasopharyngeal carcinoma (NPC) is an indispensable factor for diagnosis, guiding clinical treatment and judging prognosis. Traditional and fully supervised NPC diagnosis algorithms require manual delineation of regions of ...

Self-supervised learning on dual-sequence magnetic resonance imaging for automatic segmentation of nasopharyngeal carcinoma.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Automating the segmentation of nasopharyngeal carcinoma (NPC) is crucial for therapeutic procedures but presents challenges given the hurdles in amassing extensively annotated datasets. Although previous studies have applied self-supervised learning ...

Generalizable Magnetic Resonance Imaging-based Nasopharyngeal Carcinoma Delineation: Bridging Gaps Across Multiple Centers and Raters With Active Learning.

International journal of radiation oncology, biology, physics
PURPOSE: To develop a deep learning method exploiting active learning and source-free domain adaptation for gross tumor volume delineation in nasopharyngeal carcinoma (NPC), addressing the variability and inaccuracy when deploying segmentation models...

A Stacked Multimodality Model Based on Functional MRI Features and Deep Learning Radiomics for Predicting the Early Response to Radiotherapy in Nasopharyngeal Carcinoma.

Academic radiology
BACKGROUND: This study aimed to construct and assess a comprehensive model that integrates MRI-derived deep learning radiomics, functional imaging (fMRI), and clinical indicators to predict early efficacy of radiotherapy in nasopharyngeal carcinoma (...

Transformer-Integrated Hybrid Convolutional Neural Network for Dose Prediction in Nasopharyngeal Carcinoma Radiotherapy.

Journal of imaging informatics in medicine
Radiotherapy is recognized as the major treatment of nasopharyngeal carcinoma. Rapid and accurate dose prediction can improve the efficiency of the treatment planning process and the quality of radiotherapy plans. Currently, deep learning-based metho...