BACKGROUND: Machine learning classifiers are increasingly used to create predictive models for pathological complete response (pCR) in breast cancer after neoadjuvant therapy (NAT). Few studies have compared the effectiveness of different ML classifi...
PURPOSE: Different imaging tools, including digital breast tomosynthesis (DBT), are frequently used for evaluating tumor response during neoadjuvant chemotherapy (NACT). This study aimed to explore whether using artificial intelligence (AI) for seria...
Journal of cancer research and clinical oncology
Jul 13, 2024
PURPOSE: Neoadjuvant chemoradiotherapy has been the standard practice for patients with locally advanced rectal cancer. However, the treatment response varies greatly among individuals, how to select the optimal candidates for neoadjuvant chemoradiot...
The American journal of surgical pathology
Jul 2, 2024
Neoadjuvant therapy (NAT) has become routine in patients with borderline resectable pancreatic cancer. Pathologists examine pancreatic cancer resection specimens to evaluate the effect of NAT. However, an automated scoring system to objectively quant...
BACKGROUND: This study aims to develop a stacking model for accurately predicting axillary lymph node (ALN) response to neoadjuvant chemotherapy (NAC) using longitudinal MRI in breast cancer.
PURPOSE: This study was designed to investigate the prognostic significance of artificial intelligence (AI)-based quantification of myxoid stroma in patients undergoing esophageal squamous cell carcinoma (ESCC) surgery after neoadjuvant chemotherapy ...
BACKGROUND: Patients with resectable esophageal squamous cell carcinoma (ESCC) receiving neoadjuvant immunotherapy (NIT) display variable treatment responses. The purpose of this study is to establish and validate a radiomics based on enhanced comput...
Journal of magnetic resonance imaging : JMRI
Jun 8, 2024
BACKGROUND: Pathological complete response (pCR) is an essential criterion for adjusting follow-up treatment plans for patients with breast cancer (BC). The value of the visual geometry group and long short-term memory (VGG-LSTM) network using time-s...
PURPOSE: Developed and validated a deep learning radiomics nomogram using multi-phase contrast-enhanced computed tomography (CECT) images to predict neoadjuvant chemotherapy (NAC) response in locally advanced gastric cancer (LAGC) patients.
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.