AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Neoplasm Grading

Showing 211 to 220 of 353 articles

Clear Filters

Deep Learning-Based Gleason Grading of Prostate Cancer From Histopathology Images-Role of Multiscale Decision Aggregation and Data Augmentation.

IEEE journal of biomedical and health informatics
Visual inspection of histopathology images of stained biopsy tissue by expert pathologists is the standard method for grading of prostate cancer (PCa). However, this process is time-consuming and subject to high inter-observer variability. Machine le...

Comparison of CT and MRI images for the prediction of soft-tissue sarcoma grading and lung metastasis via a convolutional neural networks model.

Clinical radiology
AIM: To realise the automated prediction of soft-tissue sarcoma (STS) grading and lung metastasis based on computed tomography (CT), T1-weighted (T1W) magnetic resonance imaging (MRI), and fat-suppressed T2-weighted MRI (FST2W) via the convolutional ...

Deep learning for World Health Organization grades of pancreatic neuroendocrine tumors on contrast-enhanced magnetic resonance images: a preliminary study.

International journal of computer assisted radiology and surgery
PURPOSE: The World Health Organization (WHO) grading system of pancreatic neuroendocrine tumor (PNET) plays an important role in the clinical decision. The rarity of PNET often negatively affects the radiological application of deep learning algorith...

Preoperative Prediction of Pancreatic Neuroendocrine Neoplasms Grading Based on Enhanced Computed Tomography Imaging: Validation of Deep Learning with a Convolutional Neural Network.

Neuroendocrinology
INTRODUCTION: The pathological grading of pancreatic neuroendocrine neoplasms (pNENs) is an independent predictor of survival and indicator for treatment. Deep learning (DL) with a convolutional neural network (CNN) may improve the preoperative predi...

Automated classification of gastric neoplasms in endoscopic images using a convolutional neural network.

Endoscopy
BACKGROUND: Visual inspection, lesion detection, and differentiation between malignant and benign features are key aspects of an endoscopist's role. The use of machine learning for the recognition and differentiation of images has been increasingly a...

Convolution kernel and iterative reconstruction affect the diagnostic performance of radiomics and deep learning in lung adenocarcinoma pathological subtypes.

Thoracic cancer
BACKGROUND: The aim of this study was to investigate the influence of convolution kernel and iterative reconstruction on the diagnostic performance of radiomics and deep learning (DL) in lung adenocarcinomas.

Machine learning and glioma imaging biomarkers.

Clinical radiology
AIM: To review how machine learning (ML) is applied to imaging biomarkers in neuro-oncology, in particular for diagnosis, prognosis, and treatment response monitoring.

A whole slide image-based machine learning approach to predict ductal carcinoma in situ (DCIS) recurrence risk.

Breast cancer research : BCR
BACKGROUND: Breast ductal carcinoma in situ (DCIS) represent approximately 20% of screen-detected breast cancers. The overall risk for DCIS patients treated with breast-conserving surgery stems almost exclusively from local recurrence. Although a mas...

Radiomics Analysis for Glioma Malignancy Evaluation Using Diffusion Kurtosis and Tensor Imaging.

International journal of radiation oncology, biology, physics
PURPOSE: A noninvasive diagnostic method to predict the degree of malignancy accurately would be of great help in glioma management. This study aimed to create a highly accurate machine learning model to perform glioma grading.

Grading of hepatocellular carcinoma based on diffusion weighted images with multiple b-values using convolutional neural networks.

Medical physics
PURPOSE: To effectively grade hepatocellular carcinoma (HCC) based on deep features derived from diffusion weighted images (DWI) with multiple b-values using convolutional neural networks (CNN).