European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology
Oct 16, 2018
BACKGROUND: Oncotype DX(ODX) is a 21-gene breast cancer recurrence score(RS) assay that aids in decision-making for chemotherapy in early-stage hormone receptor-positive(HR+)breast cancer. We developed a prediction tool using machine learning for hig...
Prostate cancer is the most common and second most deadly form of cancer in men in the United States. The classification of prostate cancers based on Gleason grading using histological images is important in risk assessment and treatment planning for...
The Gleason grading system remains the most powerful prognostic predictor for patients with prostate cancer since the 1960s. Its application requires highly-trained pathologists, is tedious and yet suffers from limited inter-pathologist reproducibili...
Deep learning has shown promising results in medical image analysis, however, the lack of very large annotated datasets confines its full potential. Although transfer learning with ImageNet pre-trained classification models can alleviate the problem,...
Clinical cancer research : an official journal of the American Association for Cancer Research
Jul 24, 2018
Current tumor-node-metastasis (TNM) staging system cannot provide adequate information for prediction of prognosis and chemotherapeutic benefits. We constructed a classifier to predict prognosis and identify a subset of patients who can benefit from...
OBJECTIVE: The objective of this study was to assess the contribution of multi-parametric (mp) magnetic resonance imaging (MRI) quantitative features in the machine learning-based grading of gliomas with a multi-region-of-interests approach.
INTRODUCTION: Machine learning methods have been introduced as a computer aided diagnostic tool, with applications to glioma characterisation on MRI. Such an algorithmic approach may provide a useful adjunct for a rapid and accurate diagnosis of a gl...
OBJECTIVE: Feature selection (FS) methods are widely used in grading and diagnosing prostate histopathological images. In this context, FS is based on the texture features obtained from the lumen, nuclei, cytoplasm and stroma, all of which are import...
We sought to investigate, whether texture analysis of diffusional kurtosis imaging (DKI) enhanced by support vector machine (SVM) analysis may provide biomarkers for gliomas staging and detection of the IDH mutation. First-order statistics and textur...
Gleason grading of histological images is important in risk assessment and treatment planning for prostate cancer patients. Much research has been done in classifying small homogeneous cancer regions within histological images. However, semi-supervis...