AIMC Topic: Neoplasm Grading

Clear Filters Showing 21 to 30 of 375 articles

Development of Hybrid radiomic Machine learning models for preoperative prediction of meningioma grade on multiparametric MRI.

Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia
PURPOSE: To develop and compare machine learning models for distinguishing low and high grade meningiomas on multiparametric MRI.

Integrating radiomics into predictive models for low nuclear grade DCIS using machine learning.

Scientific reports
Predicting low nuclear grade DCIS before surgery can improve treatment choices and patient care, thereby reducing unnecessary treatment. Due to the high heterogeneity of DCIS and the limitations of biopsies in fully characterizing tumors, current dia...

MRI radiomics based on machine learning in high-grade gliomas as a promising tool for prediction of CD44 expression and overall survival.

Scientific reports
We aimed to predict CD44 expression and assess its prognostic significance in patients with high-grade gliomas (HGG) using non-invasive radiomics models based on machine learning. Enhanced magnetic resonance imaging, along with the corresponding gene...

Performance of Machine Learning Models in Predicting BRAF Alterations Using Imaging Data in Low-Grade Glioma: A Systematic Review and Meta-Analysis.

World neurosurgery
BACKGROUND: Understanding the BRAF alterations preoperatively could remarkably assist in predicting tumor behavior, which leads to a more precise prognostication and management strategy. Recent advances in artificial intelligence (AI) have resulted i...

Redefining prostate cancer care: innovations and future directions in active surveillance.

Current opinion in urology
PURPOSE OF REVIEW: This review provides a critical analysis of recent advancements in active surveillance (AS), emphasizing updates from major international guidelines and their implications for clinical practice.

Development of a deep learning system for predicting biochemical recurrence in prostate cancer.

BMC cancer
BACKGROUND: Biochemical recurrence (BCR) occurs in 20%-40% of men with prostate cancer (PCa) who undergo radical prostatectomy. Predicting which patients will experience BCR in advance helps in formulating more targeted prostatectomy procedures. Howe...

A deep ensemble learning framework for glioma segmentation and grading prediction.

Scientific reports
The segmentation and risk grade prediction of gliomas based on preoperative multimodal magnetic resonance imaging (MRI) are crucial tasks in computer-aided diagnosis. Due to the significant heterogeneity between and within tumors, existing methods ma...

An Artificial Intelligence Model Using Diffusion Basis Spectrum Imaging Metrics Accurately Predicts Clinically Significant Prostate Cancer.

The Journal of urology
PURPOSE: Conventional prostate magnetic resonance imaging has limited accuracy for clinically significant prostate cancer (csPCa). We performed diffusion basis spectrum imaging (DBSI) before biopsy and applied artificial intelligence models to these ...

Can we rely on machine learning algorithms as a trustworthy predictor for recurrence in high-grade glioma? A systematic review and meta-analysis.

Clinical neurology and neurosurgery
Early prediction of recurrence in high-grade glioma (HGG) is critical due to its aggressive nature and poor prognosis. Distinguishing true recurrence from treatment-related changes, such as radionecrosis, is a major diagnostic challenge. Machine lear...

Performance of Radiomics-based machine learning and deep learning-based methods in the prediction of tumor grade in meningioma: a systematic review and meta-analysis.

Neurosurgical review
Currently, the World Health Organization (WHO) grade of meningiomas is determined based on the biopsy results. Therefore, accurate non-invasive preoperative grading could significantly improve treatment planning and patient outcomes. Considering rece...