AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Neoplasm Grading

Showing 31 to 40 of 353 articles

Clear Filters

Predicting High-Grade Patterns in Stage I Solid Lung Adenocarcinoma: A Study of 371 Patients Using Refined Radiomics and Deep Learning-Guided CatBoost Classifier.

Technology in cancer research & treatment
INTRODUCTION: This study aimed to devise a diagnostic algorithm, termed the Refined Radiomics and Deep Learning Features-Guided CatBoost Classifier (RRDLC-Classifier), and evaluate its efficacy in predicting pathological high-grade patterns in patien...

Cooperative multi-task learning and interpretable image biomarkers for glioma grading and molecular subtyping.

Medical image analysis
Deep learning methods have been widely used for various glioma predictions. However, they are usually task-specific, segmentation-dependent and lack of interpretable biomarkers. How to accurately predict the glioma histological grade and molecular su...

Interpretable machine learning model for predicting clinically significant prostate cancer: integrating intratumoral and peritumoral radiomics with clinical and metabolic features.

BMC medical imaging
BACKGROUND: To develop and validate an interpretable machine learning model based on intratumoral and peritumoral radiomics combined with clinicoradiological features and metabolic information from magnetic resonance spectroscopy (MRS), to predict cl...

Classifying tumour infiltrating lymphocytes in oral squamous cell carcinoma histopathology using joint learning framework.

Scientific reports
Oral squamous cell carcinoma (OSCC) is the most common form of oral cancer, with increasing global incidence and have poor prognosis. Tumour-infiltrating lymphocytes (TILs) are recognized as a key prognostic indicator and play a vital role in OSCC gr...

Deep Learning Enabled Scoring of Pancreatic Neuroendocrine Tumors Based on Cancer Infiltration Patterns.

Endocrine pathology
Pancreatic neuroendocrine tumors (PanNETs) are a heterogeneous group of neoplasms that include tumors with different histomorphologic characteristics that can be correlated to sub-categories with different prognoses. In addition to the WHO grading sc...

When multiple instance learning meets foundation models: Advancing histological whole slide image analysis.

Medical image analysis
Deep multiple instance learning (MIL) pipelines are the mainstream weakly supervised learning methodologies for whole slide image (WSI) classification. However, it remains unclear how these widely used approaches compare to each other, given the rece...

Comparative analysis of deep learning and radiomic signatures for overall survival prediction in recurrent high-grade glioma treated with immunotherapy.

Cancer imaging : the official publication of the International Cancer Imaging Society
BACKGROUND: Radiomic analysis of quantitative features extracted from segmented medical images can be used for predictive modeling of prognosis in brain tumor patients. Manual segmentation of the tumor components is time-consuming and poses significa...

Endoscopic ultrasonography-based intratumoral and peritumoral machine learning ultrasomics model for predicting the pathological grading of pancreatic neuroendocrine tumors.

BMC medical imaging
OBJECTIVES: The objective is to develop and validate intratumoral and peritumoral ultrasomics models utilizing endoscopic ultrasonography (EUS) to predict pathological grading in pancreatic neuroendocrine tumors (PNETs).

[Value of the deep learning automated quantification of tumor-stroma ratio in predicting efficacy and prognosis of neoadjuvant therapy for breast cancer based on residual cancer burden grading].

Zhonghua bing li xue za zhi = Chinese journal of pathology
To investigate the prognostic value of deep learning-based automated quantification of tumor-stroma ratio (TSR) in patients undergoing neoadjuvant therapy (NAT) for breast cancer. Specimens were collected from 209 breast cancer patients who receive...

Multiparametric MRI along with machine learning predicts prognosis and treatment response in pediatric low-grade glioma.

Nature communications
Pediatric low-grade gliomas (pLGGs) exhibit heterogeneous prognoses and variable responses to treatment, leading to tumor progression and adverse outcomes in cases where complete resection is unachievable. Early prediction of treatment responsiveness...