AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Nerve Net

Showing 31 to 40 of 507 articles

Clear Filters

A simple clustering approach to map the human brain's cortical semantic network organization during task.

NeuroImage
Constructing task-state large-scale brain networks can enhance our understanding of the organization of brain functions during cognitive tasks. The primary goal of brain network partitioning is to cluster functionally homogeneous brain regions. Howev...

DSAM: A deep learning framework for analyzing temporal and spatial dynamics in brain networks.

Medical image analysis
Resting-state functional magnetic resonance imaging (rs-fMRI) is a noninvasive technique pivotal for understanding human neural mechanisms of intricate cognitive processes. Most rs-fMRI studies compute a single static functional connectivity matrix a...

Recurrent neural networks with transient trajectory explain working memory encoding mechanisms.

Communications biology
Whether working memory (WM) is encoded by persistent activity using attractors or by dynamic activity using transient trajectories has been debated for decades in both experimental and modeling studies, and a consensus has not been reached. Even thou...

Role of short-term plasticity and slow temporal dynamics in enhancing time series prediction with a brain-inspired recurrent neural network.

Chaos (Woodbury, N.Y.)
Typical reservoir networks are based on random connectivity patterns that differ from brain circuits in two important ways. First, traditional reservoir networks lack synaptic plasticity among recurrent units, whereas cortical networks exhibit plasti...

Comparison of derivative-based and correlation-based methods to estimate effective connectivity in neural networks.

Scientific reports
Inferring and understanding the underlying connectivity structure of a system solely from the observed activity of its constituent components is a challenge in many areas of science. In neuroscience, techniques for estimating connectivity are paramou...

Latent circuit inference from heterogeneous neural responses during cognitive tasks.

Nature neuroscience
Higher cortical areas carry a wide range of sensory, cognitive and motor signals mixed in heterogeneous responses of single neurons tuned to multiple task variables. Dimensionality reduction methods that rely on correlations between neural activity a...

CPG-based neural control of peristaltic planar locomotion in an earthworm-like robot: evaluation of nonlinear oscillators.

Bioinspiration & biomimetics
Earthworm-like robots have excellent locomotion capability in confined environments. Central pattern generator (CPG) based controllers utilize the dynamics of coupled nonlinear oscillators to spontaneously generate actuation signals for all segments,...

Schizophrenia recognition based on three-dimensional adaptive graph convolutional neural network.

Scientific reports
Previous deep learning-based brain network research has made significant progress in understanding the pathophysiology of schizophrenia. However, it ignores the three-dimensional spatial characteristics of EEG signals and cannot dynamically learn the...

Hybrid neural networks for continual learning inspired by corticohippocampal circuits.

Nature communications
Current artificial systems suffer from catastrophic forgetting during continual learning, a limitation absent in biological systems. Biological mechanisms leverage the dual representation of specific and generalized memories within corticohippocampal...

Temporal pavlovian conditioning of a model spiking neural network for discrimination sequences of short time intervals.

Journal of computational neuroscience
The brain's ability to learn and distinguish rapid sequences of events is essential for timing-dependent tasks, such as those in sports and music. However, the mechanisms underlying this ability remain an active area of research. Here, we present a P...