AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Neuroendocrine Tumors

Showing 11 to 20 of 36 articles

Clear Filters

Robotic pancreatic tumor enucleation by the double bipolar technique using the da Vinci SP system: An initial case report with a technical detail.

Asian journal of endoscopic surgery
Pancreatic tumor enucleation is a procedure that can preserve pancreatic function and is sometimes performed using a minimally invasive approach. Recently, a single-port robotic platform called da Vinci SP has been developed. However, the technical d...

Endoscopic ultrasonography-based intratumoral and peritumoral machine learning radiomics analyses for distinguishing insulinomas from non-functional pancreatic neuroendocrine tumors.

Frontiers in endocrinology
OBJECTIVES: To develop and validate radiomics models utilizing endoscopic ultrasonography (EUS) images to distinguish insulinomas from non-functional pancreatic neuroendocrine tumors (NF-PNETs).

Development and Validation of a Novel Machine Learning Model to Predict the Survival of Patients with Gastrointestinal Neuroendocrine Neoplasms.

Neuroendocrinology
INTRODUCTION: Well-calibrated models for personalized prognostication of patients with gastrointestinal neuroendocrine neoplasms (GINENs) are limited. This study aimed to develop and validate a machine-learning model to predict the survival of patien...

Automated AI-based grading of neuroendocrine tumors using Ki-67 proliferation index: comparative evaluation and performance analysis.

Medical & biological engineering & computing
Early detection is critical for successfully diagnosing cancer, and timely analysis of diagnostic tests is increasingly important. In the context of neuroendocrine tumors, the Ki-67 proliferation index serves as a fundamental biomarker, aiding pathol...

Identification of Prolactinoma in Pituitary Neuroendocrine Tumors Using Radiomics Analysis Based on Multiparameter MRI.

Journal of imaging informatics in medicine
This study aims to investigate the feasibility of preoperatively predicting histological subtypes of pituitary neuroendocrine tumors (PitNETs) using machine learning and radiomics based on multiparameter MRI. Patients with PitNETs from January 2016 t...

Identifying patients with undiagnosed small intestinal neuroendocrine tumours in primary care using statistical and machine learning: model development and validation study.

British journal of cancer
BACKGROUND: Neuroendocrine tumours (NETs) are increasing in incidence, often diagnosed at advanced stages, and individuals may experience years of diagnostic delay, particularly when arising from the small intestine (SI). Clinical prediction models c...

Development of an artificial intelligence-based model to predict early recurrence of neuroendocrine liver metastasis after resection.

Journal of gastrointestinal surgery : official journal of the Society for Surgery of the Alimentary Tract
PURPOSE: We sought to develop an artificial intelligence (AI)-based model to predict early recurrence (ER) after curative-intent resection of neuroendocrine liver metastases (NELMs).

A novel model for predicting postoperative liver metastasis in R0 resected pancreatic neuroendocrine tumors: integrating computational pathology and deep learning-radiomics.

Journal of translational medicine
BACKGROUND: Postoperative liver metastasis significantly impacts the prognosis of pancreatic neuroendocrine tumor (panNET) patients after R0 resection. Combining computational pathology and deep learning radiomics can enhance the detection of postope...

Developing a Predictive Model for Metastatic Potential in Pancreatic Neuroendocrine Tumor.

The Journal of clinical endocrinology and metabolism
CONTEXT: Pancreatic neuroendocrine tumors (PNETs) exhibit a wide range of behavior from localized disease to aggressive metastasis. A comprehensive transcriptomic profile capable of differentiating between these phenotypes remains elusive.