Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
38082930
Brain-like artificial intelligence in electronics can be built efficiently by understanding the connectivity of neuronal circuitry. The concept of neural connectivity inference with a two-dimensional cross-bar structure memristor array is indicated i...
Due to their significant resemblance to the biological brain, spiking neural networks (SNNs) show promise in handling spatiotemporal information with high time and energy efficiency. Two-terminal memristors have the capability to achieve both synapti...
For both humans and machines, the essence of learning is to pinpoint which components in its information processing pipeline are responsible for an error in its output, a challenge that is known as 'credit assignment'. It has long been assumed that c...
Dynamical balance of excitation and inhibition is usually invoked to explain the irregular low firing activity observed in the cortex. We propose a robust nonlinear balancing mechanism for a random network of spiking neurons, which works also in the ...
The classic spiking neural P (SN P) systems abstract the real biological neural network into a simple structure based on graphs, where neurons can only communicate on the plane. This study proposes the hypergraph-based numerical spiking neural membra...
An important difference between brains and deep neural networks is the way they learn. Nervous systems learn online where a stream of noisy data points are presented in a non-independent, identically distributed way. Further, synaptic plasticity in t...
IEEE transactions on neural networks and learning systems
38536699
Synaptic plasticity plays a critical role in the expression power of brain neural networks. Among diverse plasticity rules, synaptic scaling presents indispensable effects on homeostasis maintenance and synaptic strength regulation. In the current mo...
IEEE transactions on neural networks and learning systems
38329858
Spiking neural networks (SNNs) mimic their biological counterparts more closely than their predecessors and are considered the third generation of artificial neural networks. It has been proven that networks of spiking neurons have a higher computati...
IEEE transactions on neural networks and learning systems
38113154
Spiking neural networks (SNNs) are the basis for many energy-efficient neuromorphic hardware systems. While there has been substantial progress in SNN research, artificial SNNs still lack many capabilities of their biological counterparts. In biologi...