AIMC Topic: Patient Admission

Clear Filters Showing 21 to 30 of 67 articles

Machine learning based early mortality prediction in the emergency department.

International journal of medical informatics
BACKGROUND: It is a great challenge for emergency physicians to early detect the patient's deterioration and prevent unexpected death through a large amount of clinical data, which requires sufficient experience and keen insight.

Ambient air pollution and cardiovascular disease rate an ANN modeling: Yazd-Central of Iran.

Scientific reports
This study was aimed to investigate the air pollutants impact on heart patient's hospital admission rates in Yazd for the first time. Modeling was done by time series, multivariate linear regression, and artificial neural network (ANN). During 5 year...

Development and Assessment of an Interpretable Machine Learning Triage Tool for Estimating Mortality After Emergency Admissions.

JAMA network open
IMPORTANCE: Triage in the emergency department (ED) is a complex clinical judgment based on the tacit understanding of the patient's likelihood of survival, availability of medical resources, and local practices. Although a scoring tool could be valu...

Contrasting factors associated with COVID-19-related ICU admission and death outcomes in hospitalised patients by means of Shapley values.

PLoS computational biology
Identification of those at greatest risk of death due to the substantial threat of COVID-19 can benefit from novel approaches to epidemiology that leverage large datasets and complex machine-learning models, provide data-driven intelligence, and guid...

Multivariable mortality risk prediction using machine learning for COVID-19 patients at admission (AICOVID).

Scientific reports
In Coronavirus disease 2019 (COVID-19), early identification of patients with a high risk of mortality can significantly improve triage, bed allocation, timely management, and possibly, outcome. The study objective is to develop and validate individu...

Neural network predicts need for red blood cell transfusion for patients with acute gastrointestinal bleeding admitted to the intensive care unit.

Scientific reports
Acute gastrointestinal bleeding is the most common gastrointestinal cause for hospitalization. For high-risk patients requiring intensive care unit stay, predicting transfusion needs during the first 24 h using dynamic risk assessment may improve res...

Prediction of risk of acquiring urinary tract infection during hospital stay based on machine-learning: A retrospective cohort study.

PloS one
BACKGROUND: Healthcare associated infections (HAI) are a major burden for the healthcare system and associated with prolonged hospital stay, increased morbidity, mortality and costs. Healthcare associated urinary tract infections (HA-UTI) accounts fo...

A Machine Learning Prediction Model of Respiratory Failure Within 48 Hours of Patient Admission for COVID-19: Model Development and Validation.

Journal of medical Internet research
BACKGROUND: Predicting early respiratory failure due to COVID-19 can help triage patients to higher levels of care, allocate scarce resources, and reduce morbidity and mortality by appropriately monitoring and treating the patients at greatest risk f...