AIMC Topic: Phenotype

Clear Filters Showing 531 to 540 of 922 articles

Identifying genetic determinants of complex phenotypes from whole genome sequence data.

BMC genomics
BACKGROUND: A critical goal in biology is to relate the phenotype to the genotype, that is, to find the genetic determinants of various traits. However, while simple monofactorial determinants are relatively easy to identify, the underpinnings of com...

Using artificial intelligence methods to speed up drug discovery.

Expert opinion on drug discovery
: Drug discovery is the process through which potential new compounds are identified by means of biology, chemistry, and pharmacology. Due to the high complexity of genomic data, AI techniques are increasingly needed to help reduce this and aid the a...

Non-Invasive Sensing of Nitrogen in Plant Using Digital Images and Machine Learning for ssp. L.

Sensors (Basel, Switzerland)
Monitoring plant nitrogen (N) in a timely way and accurately is critical for precision fertilization. The imaging technology based on visible light is relatively inexpensive and ubiquitous, and open-source analysis tools have proliferated. In this st...

Drug repositioning of herbal compounds via a machine-learning approach.

BMC bioinformatics
BACKGROUND: Drug repositioning, also known as drug repurposing, defines new indications for existing drugs and can be used as an alternative to drug development. In recent years, the accumulation of large volumes of information related to drugs and d...

WhoGEM: an admixture-based prediction machine accurately predicts quantitative functional traits in plants.

Genome biology
The explosive growth of genomic data provides an opportunity to make increased use of sequence variations for phenotype prediction. We have developed a prediction machine for quantitative phenotypes (WhoGEM) that overcomes some of the bottlenecks lim...

Robust identification of molecular phenotypes using semi-supervised learning.

BMC bioinformatics
BACKGROUND: Modern molecular profiling techniques are yielding vast amounts of data from patient samples that could be utilized with machine learning methods to provide important biological insights and improvements in patient outcomes. Unsupervised ...

Whole-genome deep-learning analysis identifies contribution of noncoding mutations to autism risk.

Nature genetics
We address the challenge of detecting the contribution of noncoding mutations to disease with a deep-learning-based framework that predicts the specific regulatory effects and the deleterious impact of genetic variants. Applying this framework to 1,7...

Real-time analysis of the behaviour of groups of mice via a depth-sensing camera and machine learning.

Nature biomedical engineering
Preclinical studies of psychiatric disorders use animal models to investigate the impact of environmental factors or genetic mutations on complex traits such as decision-making and social interactions. Here, we introduce a method for the real-time an...

Identification and analysis of behavioral phenotypes in autism spectrum disorder via unsupervised machine learning.

International journal of medical informatics
BACKGROUND AND OBJECTIVE: Autism spectrum disorder (ASD) is a heterogeneous disorder. Research has explored potential ASD subgroups with preliminary evidence supporting the existence of behaviorally and genetically distinct subgroups; however, resear...

New Deep Learning Genomic-Based Prediction Model for Multiple Traits with Binary, Ordinal, and Continuous Phenotypes.

G3 (Bethesda, Md.)
Multiple-trait experiments with mixed phenotypes (binary, ordinal and continuous) are not rare in animal and plant breeding programs. However, there is a lack of statistical models that can exploit the correlation between traits with mixed phenotypes...