BACKGROUND AND OBJECTIVES: Early and cost-effective identification of amyloid positivity is crucial for Alzheimer's disease (AD) diagnosis. While amyloid PET is the gold standard, plasma biomarkers such as phosphorylated tau 217 (pTau217) provide a p...
Alzheimer's disease (AD) diagnosis hinges on detecting amyloid beta (Aβ) plaques and neurofibrillary tau (τ) tangles, typically assessed using PET imaging. While accurate, these modalities are expensive and not widely accessible, limiting their utili...
Brain tumor segmentation plays a crucial role in clinical diagnostics and treatment planning, yet accurate and efficient segmentation remains a significant challenge due to complex tumor structures and variations in imaging modalities. Multi-feature ...
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that significantly impacts cognitive function, posing a major global health challenge. Despite its rising prevalence, particularly in low and middle-income countries, early diagnosi...
This study developed machine learning models to predict Aβ positivity in Alzheimer's disease by integrating early-phase F-Florbetaben PET and clinical data to improve diagnostic accuracy. Furthermore, the study explored machine learning models to pre...
BACKGROUND: Widely used in oncology PET, 2-deoxy-2- 18 F-FDG PET is more accessible and affordable than amyloid PET, which is a crucial tool to determine amyloid positivity in diagnosis of Alzheimer disease (AD). This study aimed to leverage deep lea...
BACKGROUND/PURPOSE: Multiple parametric imaging in positron emission tomography (PET) is challenging due to the noisy dynamic data and the complex mapping to kinetic parameters. Although methods like direct parametric reconstruction have been propose...
The recent approval of anti-amyloid pharmaceuticals for the treatment of Alzheimer's disease (AD) has created a pressing need for the ability to accurately identify optimal candidates for anti-amyloid therapy, specifically those with evidence for inc...
OBJECTIVE: PET image analysis provides tumor heterogeneity data related to neoadjuvant chemotherapy response (NACR) and metastatic risk in osteosarcoma. Ki-67 expression is used to predict metastasis. The accuracy of prediction models with image quan...
Alzheimer's Disease (AD) as one of the most prevalent neurodegenerative disorders worldwide, characterized by significant memory and cognitive decline in its later stages, severely impacting daily lives. Consequently, early diagnosis and accurate ass...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.