AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Positron-Emission Tomography

Showing 21 to 30 of 473 articles

Clear Filters

Modernizing Neuro-Oncology: The Impact of Imaging, Liquid Biopsies, and AI on Diagnosis and Treatment.

International journal of molecular sciences
Advances in neuro-oncology have transformed the diagnosis and management of brain tumors, which are among the most challenging malignancies due to their high mortality rates and complex neurological effects. Despite advancements in surgery and chemor...

The Value of Artificial Intelligence in Prostate-Specific Membrane Antigen Positron Emission Tomography: An Update.

Seminars in nuclear medicine
This review aims to provide an up-to-date overview of the utility of artificial intelligence (AI) in evaluating prostate-specific membrane antigen (PSMA) positron emission tomography (PET) scans for prostate cancer (PCa). A literature review was cond...

Machine learning models for dementia screening to classify brain amyloid positivity on positron emission tomography using blood markers and demographic characteristics: a retrospective observational study.

Alzheimer's research & therapy
BACKGROUND: Intracerebral amyloid β (Aβ) accumulation is considered the initial observable event in the pathological process of Alzheimer's disease (AD). Efficient screening for amyloid pathology is critical for identifying patients for early treatme...

Clinical impact of an explainable machine learning with amino acid PET imaging: application to the diagnosis of aggressive glioma.

European journal of nuclear medicine and molecular imaging
PURPOSE: Radiomics-based machine learning (ML) models of amino acid positron emission tomography (PET) images have shown efficiency in glioma prediction tasks. However, their clinical impact on physician interpretation remains limited. This study inv...

Continuous single-ended depth-of-interaction measurement using highly multiplexed signals and artificial neural networks.

Physics in medicine and biology
. This study aims to enhance positron emission tomography (PET) imaging systems by developing a continuous depth-of-interaction (DOI) measurement technique using a single-ended readout. Our primary focus is on reducing the number of readout channels ...

Clinical validation of artificial intelligence-based single-subject morphometry without normative reference database.

Journal of Alzheimer's disease : JAD
BACKGROUND: Single-subject voxel-based morphometry (VBM) is a powerful technique for reader-independent detection of brain atrophy in structural magnetic resonance imaging (MRI) to support the (differential) diagnosis and staging of neurodegenerative...

Deep learning-based organ-wise dosimetry of Cu-DOTA-rituximab through only one scanning.

Scientific reports
This study aimed to generate a delayed Cu-dotatate (DOTA)-rituximab positron emission tomography (PET) image from its early-scanned image by deep learning to mitigate the inconvenience and cost of estimating absorbed radiopharmaceutical doses. We acq...

Reducing inference cost of Alzheimer's disease identification using an uncertainty-aware ensemble of uni-modal and multi-modal learners.

Scientific reports
While multi-modal deep learning approaches trained using magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG PET) data have shown promise in the accurate identification of Alzheimer's disease, their clinical appl...

Diffused Multi-scale Generative Adversarial Network for low-dose PET images reconstruction.

Biomedical engineering online
PURPOSE: The aim of this study is to convert low-dose PET (L-PET) images to full-dose PET (F-PET) images based on our Diffused Multi-scale Generative Adversarial Network (DMGAN) to offer a potential balance between reducing radiation exposure and mai...

Detection of Alzheimer Disease in Neuroimages Using Vision Transformers: Systematic Review and Meta-Analysis.

Journal of medical Internet research
BACKGROUND: Alzheimer disease (AD) is a progressive condition characterized by cognitive decline and memory loss. Vision transformers (ViTs) are emerging as promising deep learning models in medical imaging, with potential applications in the detecti...