AIMC Topic: Positron-Emission Tomography

Clear Filters Showing 51 to 60 of 512 articles

A deep learning method for the recovery of standard-dose imaging quality from ultra-low-dose PET on wavelet domain.

European journal of nuclear medicine and molecular imaging
PURPOSE: Recent development in positron emission tomography (PET) dramatically increased the effective sensitivity by increasing the geometric coverage leading to total-body PET imaging. This encouraging breakthrough brings the hope of ultra-low dose...

Multi-scale multimodal deep learning framework for Alzheimer's disease diagnosis.

Computers in biology and medicine
Multimodal neuroimaging data, including magnetic resonance imaging (MRI) and positron emission tomography (PET), provides complementary information about the brain that can aid in Alzheimer's disease (AD) diagnosis. However, most existing deep learni...

Multiclass classification of Alzheimer's disease prodromal stages using sequential feature embeddings and regularized multikernel support vector machine.

NeuroImage
The detection of patients in the cognitive normal (CN), mild cognitive impairment (MCI), and Alzheimer's disease (AD) stages of neurodegeneration is crucial for early treatment interventions. However, the heterogeneity of MCI data samples poses a cha...

From Images to Genes: Radiogenomics Based on Artificial Intelligence to Achieve Non-Invasive Precision Medicine in Cancer Patients.

Advanced science (Weinheim, Baden-Wurttemberg, Germany)
With the increasing demand for precision medicine in cancer patients, radiogenomics emerges as a promising frontier. Radiogenomics is originally defined as a methodology for associating gene expression information from high-throughput technologies wi...

Brain imaging and machine learning reveal uncoupled functional network for contextual threat memory in long sepsis.

Scientific reports
Positron emission tomography (PET) utilizes radiotracers like [F]fluorodeoxyglucose (FDG) to measure brain activity in health and disease. Performing behavioral tasks between the FDG injection and the PET scan allows the FDG signal to reflect task-re...

Using interpretable deep learning radiomics model to diagnose and predict progression of early AD disease spectrum: a preliminary [F]FDG PET study.

European radiology
OBJECTIVES: In this study, we propose an interpretable deep learning radiomics (IDLR) model based on [F]FDG PET images to diagnose the clinical spectrum of Alzheimer's disease (AD) and predict the progression from mild cognitive impairment (MCI) to A...

Tracer-Separator: A Deep Learning Model for Brain PET Dual-Tracer ( 18 F-FDG and Amyloid) Separation.

Clinical nuclear medicine
INTRODUCTION: Multiplexed PET imaging revolutionized clinical decision-making by simultaneously capturing various radiotracer data in a single scan, enhancing diagnostic accuracy and patient comfort. Through a transformer-based deep learning, this st...

GeSeNet: A General Semantic-Guided Network With Couple Mask Ensemble for Medical Image Fusion.

IEEE transactions on neural networks and learning systems
At present, multimodal medical image fusion technology has become an essential means for researchers and doctors to predict diseases and study pathology. Nevertheless, how to reserve more unique features from different modal source images on the prem...

A support vector machine-based approach to guide the selection of a pseudo-reference region for brain PET quantification.

Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism
A Support Vector Machine (SVM) based approach was developed to identify a pseudo-reference region for brain PET scans with the aim of reducing interscan and intersubject variability. By training a binary linear SVM classifier with PET datasets from t...

Automated deep learning segmentation of cardiac inflammatory FDG PET.

Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology
BACKGROUND: Fluorodeoxyglucose positron emission tomography (FDG PET) with suppression of myocardial glucose utilization plays a pivotal role in diagnosing cardiac sarcoidosis. Reorientation of images to match perfusion datasets and myocardial segmen...