AIMC Topic: Positron-Emission Tomography

Clear Filters Showing 51 to 60 of 502 articles

GeSeNet: A General Semantic-Guided Network With Couple Mask Ensemble for Medical Image Fusion.

IEEE transactions on neural networks and learning systems
At present, multimodal medical image fusion technology has become an essential means for researchers and doctors to predict diseases and study pathology. Nevertheless, how to reserve more unique features from different modal source images on the prem...

A support vector machine-based approach to guide the selection of a pseudo-reference region for brain PET quantification.

Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism
A Support Vector Machine (SVM) based approach was developed to identify a pseudo-reference region for brain PET scans with the aim of reducing interscan and intersubject variability. By training a binary linear SVM classifier with PET datasets from t...

Automated deep learning segmentation of cardiac inflammatory FDG PET.

Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology
BACKGROUND: Fluorodeoxyglucose positron emission tomography (FDG PET) with suppression of myocardial glucose utilization plays a pivotal role in diagnosing cardiac sarcoidosis. Reorientation of images to match perfusion datasets and myocardial segmen...

Automated Neural Architecture Search for Cardiac Amyloidosis Classification from [18F]-Florbetaben PET Images.

Journal of imaging informatics in medicine
Medical image classification using convolutional neural networks (CNNs) is promising but often requires extensive manual tuning for optimal model definition. Neural architecture search (NAS) automates this process, reducing human intervention signifi...

Development and validation of a machine learning model to predict myocardial blood flow and clinical outcomes from patients' electrocardiograms.

Cell reports. Medicine
We develop a machine learning (ML) model using electrocardiography (ECG) to predict myocardial blood flow reserve (MFR) and assess its prognostic value for major adverse cardiovascular events (MACEs). Using 3,639 ECG-positron emission tomography (PET...

Artificial intelligence-based analysis of behavior and brain images in cocaine-self-administered marmosets.

Journal of neuroscience methods
BACKGROUND: The sophisticated behavioral and cognitive repertoires of non-human primates (NHPs) make them suitable subjects for studies involving cocaine self-administration (SA) schedules. However, ethical considerations, adherence to the 3Rs princi...

Deep learning-based techniques for estimating high-quality full-dose positron emission tomography images from low-dose scans: a systematic review.

BMC medical imaging
This systematic review aimed to evaluate the potential of deep learning algorithms for converting low-dose Positron Emission Tomography (PET) images to full-dose PET images in different body regions. A total of 55 articles published between 2017 and ...

PET radiomics-based lymphovascular invasion prediction in lung cancer using multiple segmentation and multi-machine learning algorithms.

Physical and engineering sciences in medicine
The current study aimed to predict lymphovascular invasion (LVI) using multiple machine learning algorithms and multi-segmentation positron emission tomography (PET) radiomics in non-small cell lung cancer (NSCLC) patients, offering new avenues for p...