AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Positron-Emission Tomography

Showing 71 to 80 of 473 articles

Clear Filters

Automated Lugano Metabolic Response Assessment in F-Fluorodeoxyglucose-Avid Non-Hodgkin Lymphoma With Deep Learning on F-Fluorodeoxyglucose-Positron Emission Tomography.

Journal of clinical oncology : official journal of the American Society of Clinical Oncology
PURPOSE: Artificial intelligence can reduce the time used by physicians on radiological assessments. For F-fluorodeoxyglucose-avid lymphomas, obtaining complete metabolic response (CMR) by end of treatment is prognostic.

Precise positioning of gamma ray interactions in multiplexed pixelated scintillators using artificial neural networks.

Biomedical physics & engineering express
. The positioning ofray interactions in positron emission tomography (PET) detectors is commonly made through the evaluation of the Anger logic flood histograms. machine learning techniques, leveraging features extracted from signal waveform, have de...

Anatomically Guided PET Image Reconstruction Using Conditional Weakly-Supervised Multi-Task Learning Integrating Self-Attention.

IEEE transactions on medical imaging
To address the lack of high-quality training labels in positron emission tomography (PET) imaging, weakly-supervised reconstruction methods that generate network-based mappings between prior images and noisy targets have been developed. However, the ...

Transformer-CNN hybrid network for improving PET time of flight prediction.

Physics in medicine and biology
In positron emission tomography (PET) reconstruction, the integration of time-of-flight (TOF) information, known as TOF-PET, has been a major research focus. Compared to traditional reconstruction methods, the introduction of TOF enhances the signal-...

A multimodal machine learning model for predicting dementia conversion in Alzheimer's disease.

Scientific reports
Alzheimer's disease (AD) accounts for 60-70% of the population with dementia. Mild cognitive impairment (MCI) is a diagnostic entity defined as an intermediate stage between subjective cognitive decline and dementia, and about 10-15% of people annual...

Automated glioblastoma patient classification using hypoxia levels measured through magnetic resonance images.

BMC neuroscience
INTRODUCTION: The challenge of treating Glioblastoma (GBM) tumors is due to various mechanisms that make the tumor resistant to radiation therapy. One of these mechanisms is hypoxia, and therefore, determining the level of hypoxia can improve treatme...

Deep learning generation of preclinical positron emission tomography (PET) images from low-count PET with task-based performance assessment.

Medical physics
BACKGROUND: Preclinical low-count positron emission tomography (LC-PET) imaging offers numerous advantages such as facilitating imaging logistics, enabling longitudinal studies of long- and short-lived isotopes as well as increasing scanner throughpu...

Prostate-specific Membrane Antigen: Interpretation Criteria, Standardized Reporting, and the Use of Machine Learning.

PET clinics
Prostate-specific membrane antigen targeting positron emission tomography (PSMA-PET) is routinely used for the staging and restaging of patients with various stages of prostate cancer. For clear communication with referring physicians and to improve ...

PSMA-positive prostatic volume prediction with deep learning based on T2-weighted MRI.

La Radiologia medica
PURPOSE: High PSMA expression might be correlated with structural characteristics such as growth patterns on histopathology, not recognized by the human eye on MRI images. Deep structural image analysis might be able to detect such differences and th...