AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Prostatic Neoplasms

Showing 31 to 40 of 1303 articles

Clear Filters

Comparative analysis prediction of prostate and testicular cancer mortality using machine learning: accuracy study.

Sao Paulo medical journal = Revista paulista de medicina
BACKGROUND: The mortality rates of prostate and testicular cancer are higher mortality in the northeast region.

Air pollution and prostate cancer: Unraveling the connection through network toxicology and machine learning.

Ecotoxicology and environmental safety
BACKGROUND: In recent years, air pollution has been demonstrated to be associated with the occurrence of various diseases. This study aims to explore the potential association between air pollutants and prostate cancer (PCa) and to identify key genes...

Prediction of Prostate Cancer Grades Using Radiomic Features.

Acta medica Okayama
We developed a machine learning model for predicting prostate cancer (PCa) grades using radiomic features of magnetic resonance imaging. 112 patients diagnosed with PCa based on prostate biopsy between January 2014 and December 2021 were evaluated. L...

Z-SSMNet: Zonal-aware Self-supervised Mesh Network for prostate cancer detection and diagnosis with Bi-parametric MRI.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Bi-parametric magnetic resonance imaging (bpMRI) has become a pivotal modality in the detection and diagnosis of clinically significant prostate cancer (csPCa). Developing AI-based systems to identify csPCa using bpMRI can transform prostate cancer (...

Incorporating indirect MRI information in a CT-based deep learning model for prostate auto-segmentation.

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
BACKGROUND AND PURPOSE: Computed tomography (CT) imaging poses challenges for delineation of soft tissue structures for prostate cancer external beam radiotherapy. Guidelines require the input of magnetic resonance imaging (MRI) information. We devel...

TRUSWorthy: toward clinically applicable deep learning for confident detection of prostate cancer in micro-ultrasound.

International journal of computer assisted radiology and surgery
PURPOSE: While deep learning methods have shown great promise in improving the effectiveness of prostate cancer (PCa) diagnosis by detecting suspicious lesions from trans-rectal ultrasound (TRUS), they must overcome multiple simultaneous challenges. ...

Predicting cancer survival at different stages: Insights from fair and explainable machine learning approaches.

International journal of medical informatics
OBJECTIVES: While prior machine learning (ML) models for cancer survivability prediction often treated all cancer stages uniformly, cancer survivability prediction should involve understanding how different stages impact the outcomes. Additionally, t...

Machine learning-based identification of co-expressed genes in prostate cancer and CRPC and construction of prognostic models.

Scientific reports
The objective of this study was to employ machine learning to identify shared differentially expressed genes (DEGs) in prostate cancer (PCa) initiation and castration resistance, aiming to establish a robust prognostic model and enhance understanding...

Validation of a Digital Pathology-Based Multimodal Artificial Intelligence Biomarker in a Prospective, Real-World Prostate Cancer Cohort Treated with Prostatectomy.

Clinical cancer research : an official journal of the American Association for Cancer Research
PURPOSE: A multimodal artificial intelligence (MMAI) biomarker was developed using clinical trial data from North American men with localized prostate cancer treated with definitive radiation, using biopsy digital pathology images and key clinical in...