AIMC Topic: Radiographic Image Enhancement

Clear Filters Showing 31 to 40 of 102 articles

Deep-learning-based image reconstruction in dynamic contrast-enhanced abdominal CT: image quality and lesion detection among reconstruction strength levels.

Clinical radiology
AIM: To evaluate the use of deep-learning-based image reconstruction (DLIR) algorithms in dynamic contrast-enhanced computed tomography (CT) of the abdomen, and to compare the image quality and lesion conspicuity among the reconstruction strength lev...

Using Convolutional Neural Network with Cheat Sheet and Data Augmentation to Detect Breast Cancer in Mammograms.

Computational and mathematical methods in medicine
The American Cancer Society expected to diagnose 276,480 new cases of invasive breast cancer in the USA and 48,530 new cases of noninvasive breast cancer among women in 2020. Early detection of breast cancer, followed by appropriate treatment, can re...

The effect of deep convolutional neural networks on radiologists' performance in the detection of hip fractures on digital pelvic radiographs.

European journal of radiology
PURPOSE: The purpose of our study is to develop deep convolutional neural network (DCNN) for detecting hip fractures using CT and MRI as a gold standard, and to evaluate the diagnostic performance of 7 readers with and without DCNN.

Machine learning paradigm for dynamic contrast-enhanced MRI evaluation of expanding bladder.

Frontiers in bioscience (Landmark edition)
Delineation of the bladder under a dynamic contrast enhanced (DCE)-MRI protocol requires robust segmentation. However, this method is subject to errors due to variations in the content of fluid within the bladder, as well as presence of air and simil...

Potential of deep learning in assessing pneumoconiosis depicted on digital chest radiography.

Occupational and environmental medicine
OBJECTIVES: To investigate the potential of deep learning in assessing pneumoconiosis depicted on digital chest radiographs and to compare its performance with certified radiologists.

Learning deformable registration of medical images with anatomical constraints.

Neural networks : the official journal of the International Neural Network Society
Deformable image registration is a fundamental problem in the field of medical image analysis. During the last years, we have witnessed the advent of deep learning-based image registration methods which achieve state-of-the-art performance, and drast...