PURPOSE: Foreign bodies such as a surgical gauze can be retained in the body after surgery and in some cases cannot be detected by postoperative radiography. The aim of this study was to develop an object detection model capable of postsurgical detec...
OBJECTIVES: Small bowel obstruction is a common surgical emergency which can lead to bowel necrosis, perforation and death. Plain abdominal X-rays are frequently used as a first-line test but the availability of immediate expert radiological review i...
AIM: To evaluate the use of deep-learning-based image reconstruction (DLIR) algorithms in dynamic contrast-enhanced computed tomography (CT) of the abdomen, and to compare the image quality and lesion conspicuity among the reconstruction strength lev...
OBJECTIVE: This study aimed to conduct objective and subjective comparisons of image quality among abdominal computed tomography (CT) reconstructions with deep learning reconstruction (DLR) algorithms, model-based iterative reconstruction (MBIR), and...
Body weight is an indispensable parameter for determination of contrast medium dose, appropriate drug dosing, or management of radiation dose. However, we cannot always determine the accurate patient body weight at the time of computed tomography (CT...
BACKGROUND: Efforts to reduce the radiation dose have continued steadily, with new reconstruction techniques. Recently, image denoising algorithms using artificial neural networks, termed deep learning reconstruction (DLR), have been applied to CT im...
Organ segmentation, chest radiograph classification, and lung and liver nodule detections are some of the popular artificial intelligence (AI) tasks in chest and abdominal radiology due to the wide availability of public datasets. AI algorithms have ...
OBJECTIVES: To evaluate standard dose-like computed tomography (CT) images generated by a deep learning method, trained using unpaired low-dose CT (LDCT) and standard-dose CT (SDCT) images.
BACKGROUND: Due to intrinsic differences in data formatting, data structure, and underlying semantic information, the integration of imaging data with clinical data can be non-trivial. Optimal integration requires robust data fusion, that is, the pro...
OBJECTIVE: Detection of pneumoperitoneum using abdominal radiography, particularly in the supine position, is often challenging. This study aimed to develop and externally validate a deep learning model for the detection of pneumoperitoneum using sup...