OBJECTIVES: This study aimed to evaluate the effectiveness of large language models (LLM) in assessing the methodological quality of radiomics research, using METhodological RadiomICs Score (METRICS) tool.
PURPOSE: This study aims to assess whether the novel CovBat harmonization method can further reduce radiomics feature variability from different imaging devices in multi-center studies and improve machine learning model performance compared to the Co...
PURPOSE: Distinguishing between Osteonecrosis of the femoral head (ONFH) and Osteoarthritis (OA) can be subjective and vary between users with different backgrounds and expertise. This study aimed to construct and evaluate several Radiomics-based mac...
PURPOSE: Build machine learning (ML) models able to predict pathological complete response (pCR) after neoadjuvant chemotherapy (NAC) in breast cancer (BC) patients based on conventional and radiomic signatures extracted from baseline [F]FDG PET/CT.
BACKGROUND: Accurate preoperative prediction of vascular invasion in breast cancer is crucial for surgical planning and patient management. MRI radiomics has shown promise in enhancing diagnostic precision. This study aims to evaluate the effectivene...
Oral surgery, oral medicine, oral pathology and oral radiology
Jan 24, 2025
OBJECTIVE: This study aimed to develop an ultrasound image-based radiomics model for diagnosing cervical lymph node (LN) metastasis in patients with head and neck squamous cell carcinoma (HNSCC) that shows higher accuracy than previous models.
Currently, the World Health Organization (WHO) grade of meningiomas is determined based on the biopsy results. Therefore, accurate non-invasive preoperative grading could significantly improve treatment planning and patient outcomes. Considering rece...
PURPOSE: Adaptive radiotherapy accounts for interfractional anatomic changes. We hypothesize that changes in the gross tumor volumes identified during daily scans could be analyzed using delta-radiomics to predict disease progression events. We evalu...
Cancer imaging : the official publication of the International Cancer Imaging Society
Jan 21, 2025
BACKGROUND: Radiomic analysis of quantitative features extracted from segmented medical images can be used for predictive modeling of prognosis in brain tumor patients. Manual segmentation of the tumor components is time-consuming and poses significa...
OBJECTIVE: To develop and validate a computed tomography (CT)-based deep learning radiomics model to predict treatment response and progression-free survival (PFS) in patients with unresectable hepatocellular carcinoma (uHCC) treated with transarteri...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.