Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
Jul 14, 2024
PURPOSE: To develop a combined radiomics and deep learning (DL) model in predicting radiation esophagitis (RE) of a grade ≥ 2 for patients with esophageal cancer (EC) underwent volumetric modulated arc therapy (VMAT) based on computed tomography (CT)...
BACKGROUND: Positron emission tomography (PET) has been investigated for its ability to reconstruct proton-induced positron activity distributions in proton therapy. This technique holds potential for range verification in clinical practice. Recently...
BACKGROUND: Protoacoustic (PA) imaging has the potential to provide real-time 3D dose verification of proton therapy. However, PA images are susceptible to severe distortion due to limited angle acquisition. Our previous studies showed the potential ...
BACKGROUND AND PURPOSE: To investigate the feasibility of synthesizing computed tomography (CT) images from magnetic resonance (MR) images in multi-center datasets using generative adversarial networks (GANs) for rectal cancer MR-only radiotherapy.
BACKGROUND AND PURPOSE: Various deep learning auto-segmentation (DLAS) models have been proposed, some of which have been commercialized. However, the issue of performance degradation is notable when pretrained models are deployed in the clinic. This...
PURPOSE: This study aims to develop an ensemble machine learning-based (EML-based) risk prediction model for radiation dermatitis (RD) in patients with head and neck cancer undergoing proton radiotherapy, with the goal of achieving superior predictiv...
Journal of applied clinical medical physics
Jun 20, 2024
PURPOSE: The positional accuracy of MLC is an important element in establishing the exact dosimetry in VMAT. We comprehensively analyzed factors that may affect MLC positional accuracy in VMAT, and constructed a model to predict MLC positional deviat...
Computer methods and programs in biomedicine
Jun 19, 2024
BACKGROUND AND OBJECTIVE: To evaluate the feasibility and accuracy of radiomics, dosiomics, and deep learning (DL) in predicting Radiation Pneumonitis (RP) in lung cancer patients underwent volumetric modulated arc therapy (VMAT) to improve radiother...
BACKGROUND: 3D neural network dose predictions are useful for automating brachytherapy (BT) treatment planning for cervical cancer. Cervical BT can be delivered with numerous applicators, which necessitates developing models that generalize to multip...
To evaluate the feasibility of using a deep learning dose prediction approach to identify patients who could benefit most from proton therapy based on the normal tissue complication probability (NTCP) model.Two 3D UNets were established to predict ph...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.