AIMC Topic: Radiotherapy Dosage

Clear Filters Showing 51 to 60 of 497 articles

Brachytherapy Seed Placement by Robotic Bronchoscopy with Cone Beam Computed Tomography Guidance for Peripheral Lung Cancer: A Human Cadaveric Feasibility Pilot.

International journal of radiation oncology, biology, physics
PURPOSE: This study evaluates the feasibility of using robotic-assisted bronchoscopy with cone beam computed tomography (RB-CBCT) platform to perform low-dose-rate brachytherapy (LDR-BT) implants in a mechanically ventilated human cadaveric model. Po...

Breast radiation therapy fluence painting with multi-agent deep reinforcement learning.

Medical physics
BACKGROUND: The electronic compensation (ECOMP) technique for breast radiation therapy provides excellent dose conformity and homogeneity. However, the manual fluence painting process presents a challenge for efficient clinical operation.

Deep learning-based synthetic CT for dosimetric monitoring of combined conventional radiotherapy and lattice boost in large lung tumors.

Radiation oncology (London, England)
PURPOSE: Conventional radiotherapy (CRT) has limited local control and poses a high risk of severe toxicity in large lung tumors. This study aimed to develop an integrated treatment plan that combines CRT with lattice boost radiotherapy (LRT) and mon...

Evaluation of AI-based auto-contouring tools in radiotherapy: A single-institution study.

Journal of applied clinical medical physics
BACKGROUND: Accurate delineation of organs at risk (OARs) is crucial yet time-consuming in the radiotherapy treatment planning workflow. Modern artificial intelligence (AI) technologies had made automation of OAR contouring feasible. This report deta...

Multi-institutional Knowledge-Based (KB) plan prediction benchmark models for whole breast irradiation.

Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
PURPOSE: To train and validate KB prediction models by merging a large multi-institutional cohort of whole breast irradiation (WBI) plans using tangential fields.

Clinical Application of Deep Learning-Assisted Needles Reconstruction in Prostate Ultrasound Brachytherapy.

International journal of radiation oncology, biology, physics
PURPOSE: High dose rate (HDR) prostate brachytherapy (BT) procedure requires image-guided needle insertion. Given that general anesthesia is often employed during the procedure, minimizing overall planning time is crucial. In this study, we explore t...

A qualitative, quantitative and dosimetric evaluation of a machine learning-based automatic segmentation method in treatment planning for gastric cancer.

Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
PURPOSE: To investigate the performance of a machine learning-based segmentation method for treatment planning of gastric cancer.

Feasibility of reconstructingpatient 3D dose distributions from 2D EPID image data using convolutional neural networks.

Physics in medicine and biology
. The primary purpose of this work is to demonstrate the feasibility of a deep convolutional neural network (dCNN) based algorithm that uses two-dimensional (2D) electronic portal imaging device (EPID) images and CT images as input to reconstruct 3D ...

A unified deep-learning framework for enhanced patient-specific quality assurance of intensity-modulated radiation therapy plans.

Medical physics
BACKGROUND: Modern radiation therapy techniques, such as intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT), use complex fluence modulation strategies to achieve optimal patient dose distribution. Ensuring their ...

Automated treatment planning with deep reinforcement learning for head-and-neck (HN) cancer intensity modulated radiation therapy (IMRT).

Physics in medicine and biology
To develop a deep reinforcement learning (DRL) agent to self-interact with the treatment planning system to automatically generate intensity modulated radiation therapy (IMRT) treatment plans for head-and-neck (HN) cancer with consistent organ-at-ris...