AIMC Topic: Retrospective Studies

Clear Filters Showing 771 to 780 of 9179 articles

Classification Prediction of Hydrocephalus After Intercerebral Haemorrhage Based on Machine Learning Approach.

Neuroinformatics
In order to construct a clinical classification prediction model for hydrocephalus after intercerebral haemorrhage(ICH) to guide clinical treatment decisions, this paper retrospectively analyses the clinical data of 844 cases of ICH and hydrocephalus...

Identification of early prognostic biomarkers in Severe Fever with Thrombocytopenia Syndrome using machine learning algorithms.

Annals of medicine
OBJECTIVE: We aimed at identifying acute phase biomarkers in Severe Fever with Thrombocytopenia Syndrome (SFTS), and to establish a model to predict mortality outcomes.

Machine-learning-assisted Preoperative Prediction of Pediatric Appendicitis Severity.

Journal of pediatric surgery
PURPOSE: This study evaluates the effectiveness of machine learning (ML) algorithms for improving the preoperative diagnosis of acute appendicitis in children, focusing on the accurate prediction of the severity of disease.

Integration of Deep Learning and Sub-regional Radiomics Improves the Prediction of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer Patients.

Academic radiology
RATIONALE AND OBJECTIVES: The precise prediction of response to neoadjuvant chemoradiotherapy is crucial for tailoring perioperative treatment in patients diagnosed with locally advanced rectal cancer (LARC). This retrospective study aims to develop ...

Using a Deep Learning Model to Predict Postoperative Visual Outcomes of Idiopathic Epiretinal Membrane Surgery.

American journal of ophthalmology
PURPOSE: This study assessed the performance of various deep learning models in predicting the postoperative outcomes of idiopathic epiretinal membrane (ERM) surgery based on preoperative optical coherence tomography (OCT) images.

Validation of a Visual Field Prediction Tool for Glaucoma: A Multicenter Study Involving Patients With Glaucoma in the United Kingdom.

American journal of ophthalmology
PURPOSE: A previously developed machine-learning approach with Kalman filtering technology accurately predicted the disease trajectory for patients with various glaucoma types and severities using clinical trial data. This study assesses performance ...

Guidance on selecting and evaluating AI auto-segmentation systems in clinical radiotherapy: insights from a six-vendor analysis.

Physical and engineering sciences in medicine
Artificial Intelligence (AI) based auto-segmentation has demonstrated numerous benefits to clinical radiotherapy workflows. However, the rapidly changing regulatory, research, and market environment presents challenges around selecting and evaluating...

Application of deep learning in automated localization and interpretation of coronary artery calcification in oncological PET/CT scans.

The international journal of cardiovascular imaging
Coronary artery calcification (CAC) is a key marker of coronary artery disease (CAD) but is often underreported in cancer patients undergoing non-gated CT or PET/CT scans. Traditional CAC assessment requires gated CT scans, leading to increased radia...