AIMC Topic: Risk Assessment

Clear Filters Showing 191 to 200 of 2719 articles

Machine Learning Multimodal Model for Delirium Risk Stratification.

JAMA network open
IMPORTANCE: Automating the identification of risk for developing hospital delirium with models that use machine learning (ML) could facilitate more rapid prevention, identification, and treatment of delirium. However, there are very few reports on th...

Development and validation of a machine learning-based risk model for metastatic disease in nmCRPC patients: a tumor marker prognostic study.

International journal of surgery (London, England)
BACKGROUND: Nonmetastatic castration-resistant prostate cancer (nmCRPC) is a clinical challenge due to the high progression rate to metastasis and mortality. To date, no prognostic model has been developed to predict the metastatic probability for nm...

An artificial intelligence interpretable tool to predict risk of deep vein thrombosis after endovenous thermal ablation.

Journal of vascular surgery. Venous and lymphatic disorders
OBJECTIVE: Endovenous thermal ablation (EVTA) stands as one of the primary treatments for superficial venous insufficiency. Concern exists about the potential for thromboembolic complications following this procedure. Although rare, those complicatio...

Unveiling PFAS hazard in European surface waters using an interpretable machine-learning model.

Environment international
Per- and polyfluoroalkyl substances (PFAS), commonly known as "forever chemicals", are ubiquitous in surface waters and potentially threaten human health and ecosystems. Despite extensive monitoring efforts, PFAS risk in European surface waters remai...

Using machine learning involving diagnoses and medications as a risk prediction tool for post-acute sequelae of COVID-19 (PASC) in primary care.

BMC medicine
BACKGROUND: The aim of our study was to determine whether the application of machine learning could predict PASC by using diagnoses from primary care and prescribed medication 1 year prior to PASC diagnosis.

Machine learning-based prediction of postoperative pancreatic fistula after laparoscopic pancreaticoduodenectomy.

BMC surgery
BACKGROUND: Clinically relevant postoperative pancreatic fistula (CR-POPF) following laparoscopic pancreaticoduodenectomy (LPD) is a critical complication that significantly worsens patient outcomes. However, the heterogeneity of its risk factors and...

Development and evaluation of a machine learning model to predict acute care for opioid use disorder among Medicaid enrollees engaged in a community-based treatment program.

Addiction (Abingdon, England)
AIMS: To develop machine-learning algorithms for predicting the risk of a hospitalization or emergency department (ED) visit for opioid use disorder (OUD) (i.e. OUD acute events) in Pennsylvania Medicaid enrollees in the Opioid Use Disorder Centers o...

Intelligent predictive risk assessment and management of sarcopenia in chronic disease patients using machine learning and a web-based tool.

European journal of medical research
BACKGROUND: Individuals with chronic diseases are at higher risk of sarcopenia, and precise prediction is essential for its prevention. This study aims to develop a risk scoring model using longitudinal data to predict the probability of sarcopenia i...