IMPORTANCE: Automating the identification of risk for developing hospital delirium with models that use machine learning (ML) could facilitate more rapid prevention, identification, and treatment of delirium. However, there are very few reports on th...
BACKGROUND: Currently, there is a paucity of literature addressing personalized risk stratification using multimodal data in patients with symptomatic aortic stenosis and heart failure with preserved ejection fraction (HFpEF) following transcatheter ...
International journal of surgery (London, England)
May 1, 2025
BACKGROUND: Nonmetastatic castration-resistant prostate cancer (nmCRPC) is a clinical challenge due to the high progression rate to metastasis and mortality. To date, no prognostic model has been developed to predict the metastatic probability for nm...
Journal of vascular surgery. Venous and lymphatic disorders
Apr 30, 2025
OBJECTIVE: Endovenous thermal ablation (EVTA) stands as one of the primary treatments for superficial venous insufficiency. Concern exists about the potential for thromboembolic complications following this procedure. Although rare, those complicatio...
Per- and polyfluoroalkyl substances (PFAS), commonly known as "forever chemicals", are ubiquitous in surface waters and potentially threaten human health and ecosystems. Despite extensive monitoring efforts, PFAS risk in European surface waters remai...
BACKGROUND: The aim of our study was to determine whether the application of machine learning could predict PASC by using diagnoses from primary care and prescribed medication 1 year prior to PASC diagnosis.
BACKGROUND: Clinically relevant postoperative pancreatic fistula (CR-POPF) following laparoscopic pancreaticoduodenectomy (LPD) is a critical complication that significantly worsens patient outcomes. However, the heterogeneity of its risk factors and...
AIMS: To develop machine-learning algorithms for predicting the risk of a hospitalization or emergency department (ED) visit for opioid use disorder (OUD) (i.e. OUD acute events) in Pennsylvania Medicaid enrollees in the Opioid Use Disorder Centers o...
BACKGROUND: Individuals with chronic diseases are at higher risk of sarcopenia, and precise prediction is essential for its prevention. This study aims to develop a risk scoring model using longitudinal data to predict the probability of sarcopenia i...
BACKGROUND: Postoperative acute kidney injury (PO-AKI) prediction models for non-cardiac major surgeries typically rely solely on preoperative clinical characteristics.
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.