AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Risk Factors

Showing 121 to 130 of 2299 articles

Clear Filters

Machine Learning Models predicting Decompensation in Cirrhosis.

Journal of gastrointestinal and liver diseases : JGLD
BACKGROUND AND AIMS: Decompensation of cirrhosis significantly decreases survival, thus, prevention of complications is paramount. We used machine learning techniques to identify parameters predicting decompensation.

Enhancing prediction and stratifying risk: machine learning and bayesian-learning models for catheter-related thrombosis in chemotherapy patients.

BMC cancer
BACKGROUND: Catheter-related thrombosis (CRT) is a serious complication in cancer patients undergoing chemotherapy, yet existing risk prediction models demonstrate limited accuracy. This study aimed to evaluate the clinical utility of machine learnin...

Construction and validation of a predictive model for intracardiac thrombus risk in patients with dilated cardiomyopathy: a retrospective study.

BMC cardiovascular disorders
BACKGROUND: Systemic embolic events due to exfoliation of intracardiac thrombus (ICT) are one of the catastrophic complications of dilated cardiomyopathy (DCM). This study intended to develop a prediction model to predict the risk of ICT in patients ...

From classical approaches to artificial intelligence, old and new tools for PDAC risk stratification and prediction.

Seminars in cancer biology
Pancreatic ductal adenocarcinoma (PDAC) is recognized as one of the most lethal malignancies, characterized by late-stage diagnosis and limited therapeutic options. Risk stratification has traditionally been performed using epidemiological studies an...

Explainable machine learning to identify risk factors for unplanned hospital readmissions in Nova Scotian hospitals.

Computers in biology and medicine
OBJECTIVE: A report from the Canadian Institute for Health Information found unplanned hospital readmissions (UHR) common, costly, and potentially avoidable, estimating a $1.8 billion cost to the Canadian healthcare system associated with inpatient r...

Predicting Risk for Patent Ductus Arteriosus in the Neonate: A Machine Learning Analysis.

Medicina (Kaunas, Lithuania)
: Patent ductus arteriosus (PDA) is common in newborns, being associated with high morbidity and mortality. While maternal and neonatal conditions are known contributors, few studies use advanced machine learning (ML) as predictive factors. This stud...

Interpretable machine learning method to predict the risk of pre-diabetes using a national-wide cross-sectional data: evidence from CHNS.

BMC public health
OBJECTIVE: The incidence of Type 2 Diabetes Mellitus (T2DM) continues to rise steadily, significantly impacting human health. Early prediction of pre-diabetic risks has emerged as a crucial public health concern in recent years. Machine learning meth...

Machine learning-based prognostic model for bloodstream infections in hematological malignancies using Th1/Th2 cytokines.

BMC infectious diseases
OBJECTIVE: Bloodstream infection (BSI) is a significant cause of mortality in patients with hematologic malignancies(HMs), particularly amid rising antibiotic resistance. This study aimed to analyze pathogen distribution, drug-resistance patterns and...

Development and validation of a convenient dementia risk prediction tool for diabetic population: A large and longitudinal machine learning cohort study.

Journal of affective disorders
BACKGROUND: Diabetes mellitus has been shown to increase the risk of dementia, with diabetic patients demonstrating twice the dementia incidence rate of non-diabetic populations. We aimed to develop and validate a novel machine learning-based dementi...