AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Risk Factors

Showing 71 to 80 of 2299 articles

Clear Filters

Comparing machine learning models for predicting preoperative DVT incidence in elderly hypertensive patients with hip fractures: a retrospective analysis.

Scientific reports
Hip fractures in the elderly present a significant public health challenge globally, especially among patients with hypertension, who are at an increased risk of developing preoperative deep vein thrombosis (DVT). DVT not only heightens surgical risk...

Investigating long-term risk of aortic aneurysm and dissection from fluoroquinolones and the key contributing factors using machine learning methods.

Scientific reports
The connection between fluoroquinolones and severe heart conditions, such as aortic aneurysm (AA) and aortic dissection (AD), has been acknowledged, but the full extent of long-term risks remains uncertain. Addressing this knowledge deficit, a retros...

Predicting cerebral infarction and transient ischemic attack in healthy individuals and those with dysmetabolism: a machine learning approach combined with routine blood tests.

Scientific reports
Ischemic cerebral infarction is the most prevalent type of stroke, causing significant disability and death worldwide. Transient ischemic attack (TIA) is a strong predictor of subsequent stroke. Individuals with dysmetabolism, such as hypertension, h...

Optimizing predictive features using machine learning for early miscarriage risk following single vitrified-warmed blastocyst transfer.

Frontiers in endocrinology
RESEARCH QUESTION: Can machine learning models accurately predict the risk of early miscarriage following single vitrified-warmed blastocyst transfer (SVBT)?

Constructing a screening model to identify patients at high risk of hospital-acquired influenza on admission to hospital.

Frontiers in public health
OBJECTIVE: To develop a machine learning (ML)-based admission screening model for hospital-acquired (HA) influenza using routinely available data to support early clinical intervention.

Predictors of smartphone addiction in adolescents with depression: combing the machine learning and moderated mediation model approach.

Behaviour research and therapy
Smartphone addiction (SA) significantly impacts the physical and mental health of adolescents, and can further exacerbate existing mental health issues in those with depression. However, fewer studies have focused on the predictors of SA in adolescen...

Investigating perioperative pressure injuries and factors influencing them with imbalanced samples using a Synthetic Minority Over-sampling Technique.

Bioscience trends
This study investigates the use of machine learning (ML) models combined with a Synthetic Minority Over-sampling Technique (SMOTE) and its variants to predict perioperative pressure injuries (PIs) in an imbalanced dataset. PIs are a significant healt...

Unraveling relevant cross-waves pattern drifts in patient-hospital risk factors among hospitalized COVID-19 patients using explainable machine learning methods.

BMC infectious diseases
BACKGROUND: Several studies explored factors related to adverse clinical outcomes among COVID-19 patients but lacked analysis of the impact of the temporal data shifts on the strength of association between different predictors and adverse outcomes. ...

Identifying potential risk genes for clear cell renal cell carcinoma with deep reinforcement learning.

Nature communications
Clear cell renal cell carcinoma (ccRCC) is the most prevalent type of renal cell carcinoma. However, our understanding of ccRCC risk genes remains limited. This gap in knowledge poses challenges to the effective diagnosis and treatment of ccRCC. To a...