Unplanned extubation (UE) can be associated with fatal outcome; however, an accurate model for predicting the mortality of UE patients in intensive care units (ICU) is lacking. Therefore, we aim to compare the performances of various machine learning...
BACKGROUND: Nucleosomes are DNA-histone complex, each wrapping about 150 pairs of double-stranded DNA. Their function is fundamental for one of the primary functions of Chromatin i.e. packing the DNA into the nucleus of the Eukaryote cells. Several b...
OBJECTIVE: Create an automated classifier for imaging characteristics of disproportionately enlarged subarachnoid space hydrocephalus (DESH), a neuroimaging phenotype of idiopathic normal pressure hydrocephalus (iNPH).
BACKGROUND AND AIMS: According to guidelines, endoscopic resection should only be performed for patients whose early gastric cancer invasion depth is within the mucosa or submucosa of the stomach regardless of lymph node involvement. The accurate pre...
Clinical & experimental ophthalmology
Nov 15, 2018
IMPORTANCE: Artificial intelligence (AI) algorithms are under development for use in diabetic retinopathy photo screening pathways. To be clinically acceptable, such systems must also be able to classify other fundus abnormalities and clinical featur...
BACKGROUND: Determining protein-protein interactions and their binding affinity are important in understanding cellular biological processes, discovery and design of novel therapeutics, protein engineering, and mutagenesis studies. Due to the time an...
BACKGROUND: Prognostication is an essential tool for risk adjustment and decision making in the intensive care unit (ICU). Research into prognostication in ICU has so far been limited to data from admission or the first 24 hours. Most ICU admissions ...
Macrometastases in bone are preceded by bone marrow invasion of disseminated tumor cells. This study combined functional imaging parameters from FDG-PET/CT and MRI in a rat model of breast cancer bone metastases to a Model-averaged Neural Network (av...
Purpose To assess the ability of convolutional neural networks (CNNs) to enable high-performance automated binary classification of chest radiographs. Materials and Methods In a retrospective study, 216 431 frontal chest radiographs obtained between ...
Assay interference compounds give rise to false-positives and cause substantial problems in medicinal chemistry. Nearly 500 compound classes have been designated as pan-assay interference compounds (PAINS), which typically occur as substructures in o...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.