AIMC Topic:
ROC Curve

Clear Filters Showing 2171 to 2180 of 3218 articles

Comparison of machine learning models for the prediction of mortality of patients with unplanned extubation in intensive care units.

Scientific reports
Unplanned extubation (UE) can be associated with fatal outcome; however, an accurate model for predicting the mortality of UE patients in intensive care units (ICU) is lacking. Therefore, we aim to compare the performances of various machine learning...

Deep learning architectures for prediction of nucleosome positioning from sequences data.

BMC bioinformatics
BACKGROUND: Nucleosomes are DNA-histone complex, each wrapping about 150 pairs of double-stranded DNA. Their function is fundamental for one of the primary functions of Chromatin i.e. packing the DNA into the nucleus of the Eukaryote cells. Several b...

Automated detection of imaging features of disproportionately enlarged subarachnoid space hydrocephalus using machine learning methods.

NeuroImage. Clinical
OBJECTIVE: Create an automated classifier for imaging characteristics of disproportionately enlarged subarachnoid space hydrocephalus (DESH), a neuroimaging phenotype of idiopathic normal pressure hydrocephalus (iNPH).

Application of convolutional neural network in the diagnosis of the invasion depth of gastric cancer based on conventional endoscopy.

Gastrointestinal endoscopy
BACKGROUND AND AIMS: According to guidelines, endoscopic resection should only be performed for patients whose early gastric cancer invasion depth is within the mucosa or submucosa of the stomach regardless of lymph node involvement. The accurate pre...

Development of an artificial intelligence system to classify pathology and clinical features on retinal fundus images.

Clinical & experimental ophthalmology
IMPORTANCE: Artificial intelligence (AI) algorithms are under development for use in diabetic retinopathy photo screening pathways. To be clinically acceptable, such systems must also be able to classify other fundus abnormalities and clinical featur...

Learning protein binding affinity using privileged information.

BMC bioinformatics
BACKGROUND: Determining protein-protein interactions and their binding affinity are important in understanding cellular biological processes, discovery and design of novel therapeutics, protein engineering, and mutagenesis studies. Due to the time an...

Optimal intensive care outcome prediction over time using machine learning.

PloS one
BACKGROUND: Prognostication is an essential tool for risk adjustment and decision making in the intensive care unit (ICU). Research into prognostication in ICU has so far been limited to data from admission or the first 24 hours. Most ICU admissions ...

Prediction of early metastatic disease in experimental breast cancer bone metastasis by combining PET/CT and MRI parameters to a Model-Averaged Neural Network.

Bone
Macrometastases in bone are preceded by bone marrow invasion of disseminated tumor cells. This study combined functional imaging parameters from FDG-PET/CT and MRI in a rat model of breast cancer bone metastases to a Model-averaged Neural Network (av...

Assessment of Convolutional Neural Networks for Automated Classification of Chest Radiographs.

Radiology
Purpose To assess the ability of convolutional neural networks (CNNs) to enable high-performance automated binary classification of chest radiographs. Materials and Methods In a retrospective study, 216 431 frontal chest radiographs obtained between ...

Machine Learning Distinguishes with High Accuracy between Pan-Assay Interference Compounds That Are Promiscuous or Represent Dark Chemical Matter.

Journal of medicinal chemistry
Assay interference compounds give rise to false-positives and cause substantial problems in medicinal chemistry. Nearly 500 compound classes have been designated as pan-assay interference compounds (PAINS), which typically occur as substructures in o...