AI Medical Compendium Topic:
ROC Curve

Clear Filters Showing 611 to 620 of 3126 articles

Diagnostic Performance of Machine Learning-based Models in Neonatal Sepsis: A Systematic Review.

The Pediatric infectious disease journal
BACKGROUND: Timely diagnosis of neonatal sepsis is challenging. We aimed to systematically evaluate the diagnostic performance of sophisticated machine learning (ML) techniques for the prediction of neonatal sepsis.

Prediction of leukemia peptides using convolutional neural network and protein compositions.

BMC cancer
Leukemia is a type of blood cell cancer that is in the bone marrow's blood-forming cells. Two types of Leukemia are acute and chronic; acute enhances fast and chronic growth gradually which are further classified into lymphocytic and myeloid leukemia...

Ultrasound-based deep learning radiomics nomogram for differentiating mass mastitis from invasive breast cancer.

BMC medical imaging
BACKGROUND: The purpose of this study is to develop and validate the potential value of the deep learning radiomics nomogram (DLRN) based on ultrasound to differentiate mass mastitis (MM) and invasive breast cancer (IBC).

Deep Learning Model Using Stool Pictures for Predicting Endoscopic Mucosal Inflammation in Patients With Ulcerative Colitis.

The American journal of gastroenterology
INTRODUCTION: Stool characteristics may change depending on the endoscopic activity of ulcerative colitis (UC). We developed a deep learning model using stool photographs of patients with UC (DLSUC) to predict endoscopic mucosal inflammation.

Identification of and as novel diagnostic biomarkers for latent tuberculosis infection using machine learning strategies and experimental verification.

Annals of medicine
BACKGROUND: Current diagnostic methods cannot effectively distinguish between latent tuberculosis infection (LTBI) and active tuberculosis (ATB). This study aims to explore novel non-invasive diagnostic biomarkers for LTBI and to elucidate possible m...

A prognostic framework for predicting lung signet ring cell carcinoma via a machine learning based cox proportional hazard model.

Journal of cancer research and clinical oncology
PURPOSE: Signet ring cell carcinoma (SRCC) is a rare type of lung cancer. The conventional survival nomogram used to predict lung cancer performs poorly for SRCC. Therefore, a novel nomogram specifically for studying SRCC is highly required.

Predicting Acute Exacerbation Phenotype in Chronic Obstructive Pulmonary Disease Patients Using VGG-16 Deep Learning.

Respiration; international review of thoracic diseases
INTRODUCTION: Exacerbations of chronic obstructive pulmonary disease (COPD) have a significant impact on hospitalizations, morbidity, and mortality of patients. This study aimed to develop a model for predicting acute exacerbation in COPD patients (A...

Prediction of visual field progression with serial optic disc photographs using deep learning.

The British journal of ophthalmology
AIM: We tested the hypothesis that visual field (VF) progression can be predicted with a deep learning model based on longitudinal pairs of optic disc photographs (ODP) acquired at earlier time points during follow-up.

Machine learning analysis of lab tests to predict bariatric readmissions.

Scientific reports
The purpose of this study was to develop a machine learning model for predicting 30-day readmission after bariatric surgery based on laboratory tests. Data were collected from patients who underwent bariatric surgery between 2018 and 2023. Laboratory...

Development of machine learning models predicting mortality using routinely collected observational health data from 0-59 months old children admitted to an intensive care unit in Bangladesh: critical role of biochemistry and haematology data.

BMJ paediatrics open
INTRODUCTION: Treatment in the intensive care unit (ICU) generates complex data where machine learning (ML) modelling could be beneficial. Using routine hospital data, we evaluated the ability of multiple ML models to predict inpatient mortality in a...