AIMC Topic: ROC Curve

Clear Filters Showing 611 to 620 of 3364 articles

Development and validation of a cardiovascular risk prediction model for Sri Lankans using machine learning.

PloS one
INTRODUCTION AND OBJECTIVES: Sri Lankans do not have a specific cardiovascular (CV) risk prediction model and therefore, World Health Organization(WHO) risk charts developed for the Southeast Asia Region are being used. We aimed to develop a CV risk ...

Combining metabolomics and machine learning to discover biomarkers for early-stage breast cancer diagnosis.

PloS one
There is an urgent need for better biomarkers for the detection of early-stage breast cancer. Utilizing untargeted metabolomics and lipidomics in conjunction with advanced data mining approaches for metabolism-centric biomarker discovery and validati...

Assessment of machine learning classifiers for predicting intraoperative blood transfusion in non-cardiac surgery.

Transfusion clinique et biologique : journal de la Societe francaise de transfusion sanguine
BACKGROUND: This study aimed to develop a machine learning classifier for predicting intraoperative blood transfusion in non-cardiac surgeries.

OrthoMortPred: Predicting one-year mortality following orthopedic hospitalization.

International journal of medical informatics
OBJECTIVE: Predicting mortality risk following orthopedic surgery is crucial for informed decision-making and patient care. This study aims to develop and validate a machine learning model for predicting one-year mortality risk after orthopedic hospi...

Machine learning-derived peripheral blood transcriptomic biomarkers for early lung cancer diagnosis: Unveiling tumor-immune interaction mechanisms.

BioFactors (Oxford, England)
Lung cancer continues to be the leading cause of cancer-related mortality worldwide. Early detection and a comprehensive understanding of tumor-immune interactions are crucial for improving patient outcomes. This study aimed to develop a novel biomar...

Comparing ensemble learning algorithms and severity of illness scoring systems in cardiac intensive care units: a retrospective study.

Einstein (Sao Paulo, Brazil)
BACKGROUND: Beatriz Nistal-Nuño designed a machine learning system type of ensemble learning for patients undergoing cardiac surgery and intensive care unit cardiology patients, based on sequences of cardiovascular physiological measurements and othe...

Self-Supervised Learning for Feature Extraction from Glomerular Images and Disease Classification with Minimal Annotations.

Journal of the American Society of Nephrology : JASN
BACKGROUND: Deep learning has great potential in digital kidney pathology. However, its effectiveness depends heavily on the availability of extensively labeled datasets, which are often limited because of the specialized knowledge and time required ...

Adapting Action Recognition Neural Networks for Automated Infantile Spasm Detection.

IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
Infantile spasms are a severe epileptic syndrome characterized by short muscular contractions lasting from 0.5 to 2 seconds. They are often misdiagnosed due to their atypical presentation, and treatment is frequently delayed, leading to stagnation or...