International journal of computer assisted radiology and surgery
Feb 6, 2021
PURPOSE: The differentiation of the ameloblastoma and odontogenic keratocyst directly affects the formulation of surgical plans, while the results of differential diagnosis by imaging alone are not satisfactory. This paper aimed to propose an algorit...
Viral co-infections occur in COVID-19 patients, potentially impacting disease progression and severity. However, there is currently no dedicated method to identify viral co-infections in patient RNA-seq data. We developed PACIFIC, a deep-learning alg...
BACKGROUND: Based on conventional MRI images, it is difficult to differentiatepseudoprogression from true progressionin GBM patients after standard treatment, which isa critical issue associated with survival. The aim of this study was to evaluate th...
European journal of nuclear medicine and molecular imaging
Jan 29, 2021
PURPOSE: Deep convolutional neural networks (CNN) for single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) has been used to improve the diagnostic accuracy of coronary artery disease (CAD). This study was to design an...
BACKGROUND: Fecal examinations in pet cats and dogs are key components of routine veterinary practice; however, their accuracy is influenced by diagnostic methodologies and the experience level of personnel performing the tests. The VETSCAN IMAGYST s...
BACKGROUND: Early and accurate evaluation of severity and prognosis in acute pancreatitis (AP), especially at the time of admission is very significant. This study was aimed to develop an artificial neural networks (ANN) model for early prediction of...
BACKGROUND: Identification of vertebral fractures (VFs) is critical for effective secondary fracture prevention owing to their association with the increasing risks of future fractures. Plain abdominal frontal radiographs (PARs) are a common investig...
Despite the increasing incidence and high morbidity associated with dementia, a simple, non-invasive, and inexpensive method of screening for dementia is yet to be discovered. This study aimed to examine whether artificial intelligence (AI) could dis...
In many medical image classification tasks, there is insufficient image data for deep convolutional neural networks (CNNs) to overcome the over-fitting problem. The light-weighted CNNs are easy to train but they usually have relatively poor classific...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.