AIMC Topic: Sensitivity and Specificity

Clear Filters Showing 681 to 690 of 2873 articles

Age and sex estimation in cephalometric radiographs based on multitask convolutional neural networks.

Oral surgery, oral medicine, oral pathology and oral radiology
OBJECTIVES: Age and sex characteristics are evident in cephalometric radiographs (CRs), yet their accurate estimation remains challenging due to the complexity of these images. This study aimed to harness deep learning to automate age and sex estimat...

Tooth numbering and classification on bitewing radiographs: an artificial intelligence pilot study.

Oral surgery, oral medicine, oral pathology and oral radiology
OBJECTIVE: The aim of this study is to assess the efficacy of employing a deep learning methodology for the automated identification and enumeration of permanent teeth in bitewing radiographs. The experimental procedures and techniques employed in th...

Automated Detection of Pediatric Foreign Body Aspiration from Chest X-rays Using Machine Learning.

The Laryngoscope
OBJECTIVE/HYPOTHESIS: Standard chest radiographs are a poor diagnostic tool for pediatric foreign body aspiration. Machine learning may improve upon the diagnostic capabilities of chest radiographs. The objective is to develop a machine learning algo...

Deep Learning for Automated Detection and Localization of Traumatic Abdominal Solid Organ Injuries on CT Scans.

Journal of imaging informatics in medicine
Computed tomography (CT) is the most commonly used diagnostic modality for blunt abdominal trauma (BAT), significantly influencing management approaches. Deep learning models (DLMs) have shown great promise in enhancing various aspects of clinical pr...

Automated Real-Time Detection of Lung Sliding Using Artificial Intelligence: A Prospective Diagnostic Accuracy Study.

Chest
BACKGROUND: Rapid evaluation for pneumothorax is a common clinical priority. Although lung ultrasound (LUS) often is used to assess for pneumothorax, its diagnostic accuracy varies based on patient and provider factors. To enhance the performance of ...

Clinical evaluation of Artificial Intelligence Driven Remote Monitoring technology for assessment of patient oral hygiene during orthodontic treatment.

American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics
INTRODUCTION: This study aimed to clinically evaluate the accuracy of Dental Monitoring's (DM) artificial intelligence (AI) image analysis and oral hygiene notification algorithm in identifying oral hygiene and mucogingival conditions.

External validation of the RSNA 2020 pulmonary embolism detection challenge winning deep learning algorithm.

European journal of radiology
PURPOSE: To evaluate the diagnostic performance and generalizability of the winning DL algorithm of the RSNA 2020 PE detection challenge to a local population using CTPA data from two hospitals.

Haemorrhage diagnosis in colour fundus images using a fast-convolutional neural network based on a modified U-Net.

Network (Bristol, England)
Retinal haemorrhage stands as an early indicator of diabetic retinopathy, necessitating accurate detection for timely diagnosis. Addressing this need, this study proposes an enhanced machine-based diagnostic test for diabetic retinopathy through an u...