AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Sepsis

Showing 31 to 40 of 307 articles

Clear Filters

Clinical evaluation of a multiplex droplet digital PCR for diagnosing suspected bloodstream infections: a prospective study.

Frontiers in cellular and infection microbiology
BACKGROUND: Though droplet digital PCR (ddPCR) has emerged as a promising tool for early pathogen detection in bloodstream infections (BSIs), more studies are needed to support its clinical application widely due to different ddPCR platforms with dis...

Interpretable machine learning-based prediction of 28-day mortality in ICU patients with sepsis: a multicenter retrospective study.

Frontiers in cellular and infection microbiology
BACKGROUND: Sepsis is a major cause of mortality in intensive care units (ICUs) and continues to pose a significant global health challenge, with sepsis-related deaths contributing substantially to the overall burden on healthcare systems worldwide. ...

Identification and experimental validation of diagnostic and prognostic genes CX3CR1, PID1 and PTGDS in sepsis and ARDS using bulk and single-cell transcriptomic analysis and machine learning.

Frontiers in immunology
BACKGROUND: Sepsis is an uncontrolled reaction to infection that causes severe organ dysfunction and is a primary cause of ARDS. Patients suffering both sepsis and ARDS have a poor prognosis and high mortality. However, the mechanisms behind their si...

Identification of DNA damage repair-related genes in sepsis using bioinformatics and machine learning: An observational study.

Medicine
Sepsis is a life-threatening disease with a high mortality rate, for which the pathogenetic mechanism still unclear. DNA damage repair (DDR) is essential for maintaining genome integrity. This study aimed to explore the role of DDR-related genes in t...

User-Oriented Requirements for Artificial Intelligence-Based Clinical Decision Support Systems in Sepsis: Protocol for a Multimethod Research Project.

JMIR research protocols
BACKGROUND: Artificial intelligence (AI)-based clinical decision support systems (CDSS) have been developed for several diseases. However, despite the potential to improve the quality of care and thereby positively impact patient-relevant outcomes, t...

AI-Driven Innovations for Early Sepsis Detection by Combining Predictive Accuracy With Blood Count Analysis in an Emergency Setting: Retrospective Study.

Journal of medical Internet research
BACKGROUND: Sepsis, a critical global health challenge, accounted for approximately 20% of worldwide deaths in 2017. Although the Sequential Organ Failure Assessment (SOFA) score standardizes the diagnosis of organ dysfunction, early sepsis detection...

Establishment and Validation of a Machine-Learning Prediction Nomogram Based on Lymphocyte Subtyping for Intra-Abdominal Candidiasis in Septic Patients.

Clinical and translational science
This study aimed to develop and validate a nomogram based on lymphocyte subtyping and clinical factors for the early and rapid prediction of Intra-abdominal candidiasis (IAC) in septic patients. A prospective cohort study of 633 consecutive patients ...

Combining machine learning and single-cell sequencing to identify key immune genes in sepsis.

Scientific reports
This research aimed to identify novel indicators for sepsis by analyzing RNA sequencing data from peripheral blood samples obtained from sepsis patients (n = 23) and healthy controls (n = 10). 5148 differentially expressed genes were identified using...

Interpretable machine learning for predicting sepsis risk in emergency triage patients.

Scientific reports
The study aimed to develop and validate a sepsis prediction model using structured electronic medical records (sEMR) and machine learning (ML) methods in emergency triage. The goal was to enhance early sepsis screening by integrating comprehensive tr...