AIMC Topic: Severity of Illness Index

Clear Filters Showing 101 to 110 of 800 articles

Severity prediction markers in dengue: a prospective cohort study using machine learning approach.

Biomarkers : biochemical indicators of exposure, response, and susceptibility to chemicals
BACKGROUND: Dengue virus causes illnesses with or without warning indicators for severe complications. There are no clear prognostic signs linked to the disease outcomes.

Screening for severe coronary stenosis in patients with apparently normal electrocardiograms based on deep learning.

BMC medical informatics and decision making
BACKGROUND: Patients with severe coronary arterystenosis may present with apparently normal electrocardiograms (ECGs), making it difficult to detect adverse health conditions during routine screenings or physical examinations. Consequently, these pat...

Effectiveness of Comprehensive Video Datasets: Toward the Development of an Artificial Intelligence Model for Ultrasonography-Based Severity Diagnosis of Carpal Tunnel Syndrome.

Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in Medicine
OBJECTIVES: Advances in diagnosing carpal tunnel syndrome (CTS) using ultrasonography (US) and artificial intelligence (AI) aim to replace nerve conduction studies. However, a method for accurate severity diagnosis remains unachieved. We explored the...

Machine learning identifies cytokine signatures of disease severity and autoantibody profiles in systemic lupus erythematosus - a pilot study.

Scientific reports
Disrupted cytokine networks and autoantibodies play an important role in the pathogenesis of systemic lupus erythematosus. However, conflicting reports and non-reproducibility have hindered progress regarding the translational potential of cytokines ...

Predictive model of in-hospital mortality in liver cirrhosis patients with hyponatremia: an artificial neural network approach.

Scientific reports
Hyponatremia can worsen the outcomes of patients with liver cirrhosis. However, it remains unclear about how to predict the risk of death in cirrhotic patients with hyponatremia. Patients with liver cirrhosis and hyponatremia were screened. Eligible ...

Development and Validation of a Prediction Model for Co-Occurring Moderate-to-Severe Anxiety Symptoms in First-Episode and Drug Naïve Patients With Major Depressive Disorder.

Depression and anxiety
Moderate-to-severe anxiety symptoms are severe and common in patients with major depressive disorder (MDD) and have a significant impact on MDD patients and their families. The main objective of this study was to develop a risk prediction model for ...

Machine Learning Identifies Clinically Distinct Phenotypes in Patients With Aortic Regurgitation.

Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography
BACKGROUND: Aortic regurgitation (AR) is a prevalent valve disease with a long latent period before symptoms appear. Recent data has suggested the role of novel markers of myocardial overload in assessing onset of decompensation.

Predicting stroke severity of patients using interpretable machine learning algorithms.

European journal of medical research
BACKGROUND: Stroke is a significant global health concern, ranking as the second leading cause of death and placing a substantial financial burden on healthcare systems, particularly in low- and middle-income countries. Timely evaluation of stroke se...

Advantages of Metabolomics-Based Multivariate Machine Learning to Predict Disease Severity: Example of COVID.

International journal of molecular sciences
The COVID-19 outbreak caused saturations of hospitals, highlighting the importance of early patient triage to optimize resource prioritization. Herein, our objective was to test if high definition metabolomics, combined with ML, can improve prognosti...