AIMC Topic: Severity of Illness Index

Clear Filters Showing 101 to 110 of 836 articles

End-to-end deep-learning model for the detection of coronary artery stenosis on coronary CT images.

Open heart
PURPOSE: We examined whether end-to-end deep-learning models could detect moderate (≥50%) or severe (≥70%) stenosis in the left anterior descending artery (LAD), right coronary artery (RCA) or left circumflex artery (LCX) in iodine contrast-enhanced ...

Deep Learning for Classification of Inflammatory Bowel Disease Activity in Whole Slide Images of Colonic Histopathology.

The American journal of pathology
Grading activity of inflammatory bowel disease (IBD) using standardized histopathological scoring systems remains challenging due to limited availability of pathologists with IBD expertise and interobserver variability. In this study, a deep learning...

Machine learning-based prediction model integrating ultrasound scores and clinical features for the progression to rheumatoid arthritis in patients with undifferentiated arthritis.

Clinical rheumatology
OBJECTIVES: Predicting rheumatoid arthritis (RA) progression in undifferentiated arthritis (UA) patients remains a challenge. Traditional approaches combining clinical assessments and ultrasonography (US) often lack accuracy due to the complex intera...

AI based medical imagery diagnosis for COVID-19 disease examination and remedy.

Scientific reports
COVID-19, caused by the SARS-CoV-2 coronavirus, has spread to more than 200 countries, affecting millions, costing billions, and claiming nearly 2 million lives since late 2019. This highly contagious disease can easily overwhelm healthcare systems i...

Automated stenosis estimation of coronary angiographies using end-to-end learning.

The international journal of cardiovascular imaging
The initial evaluation of stenosis during coronary angiography is typically performed by visual assessment. Visual assessment has limited accuracy compared to fractional flow reserve and quantitative coronary angiography, which are more time-consumin...

Evaluation of Generative Artificial Intelligence Models in Predicting Pediatric Emergency Severity Index Levels.

Pediatric emergency care
OBJECTIVE: Evaluate the accuracy and reliability of various generative artificial intelligence (AI) models (ChatGPT-3.5, ChatGPT-4.0, T5, Llama-2, Mistral-Large, and Claude-3 Opus) in predicting Emergency Severity Index (ESI) levels for pediatric eme...

Gait-based Parkinson's disease diagnosis and severity classification using force sensors and machine learning.

Scientific reports
A dual-stage model for classifying Parkinson's disease severity, through a detailed analysis of Gait signals using force sensors and machine learning approaches, is proposed in this study. Parkinson's disease is the primary neurodegenerative disorder...

Machine learning for early detection and severity classification in people with Parkinson's disease.

Scientific reports
Early detection of Parkinson's disease (PD) and accurate assessment of disease progression are critical for optimizing treatment and rehabilitation. However, there is no consensus on how to effectively detect early-stage PD and classify motor symptom...

Development of Time-Aggregated Machine Learning Model for Relapse Prediction in Pediatric Crohn's Disease.

Clinical and translational gastroenterology
INTRODUCTION: Pediatric Crohn's disease (CD) easily progresses to an active disease compared with adult CD, making it important to predict and minimize CD relapses. However, prediction of relapse at various time points (TPs) during pediatric CD remai...