AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Severity of Illness Index

Showing 271 to 280 of 753 articles

Clear Filters

Vesseg: An Open-Source Tool for Deep Learning-Based Atherosclerotic Plaque Quantification in Histopathology Images-Brief Report.

Arteriosclerosis, thrombosis, and vascular biology
Objective: Manual plaque segmentation in microscopy images is a time-consuming process in atherosclerosis research and potentially subject to unacceptable user-to-user variability and observer bias. We address this by releasing Vesseg a tool that inc...

Machine learning model for early prediction of acute kidney injury (AKI) in pediatric critical care.

Critical care (London, England)
BACKGROUND: Acute kidney injury (AKI) in pediatric critical care patients is diagnosed using elevated serum creatinine, which occurs only after kidney impairment. There are no treatments other than supportive care for AKI once it has developed, so it...

Chronic kidney disease diagnosis using decision tree algorithms.

BMC nephrology
BACKGROUND: Chronic Kidney Disease (CKD), i.e., gradual decrease in the renal function spanning over a duration of several months to years without any major symptoms, is a life-threatening disease. It progresses in six stages according to the severit...

Editorial: The National COVID Cohort Collaborative Consortium Combines Population Data with Machine Learning to Evaluate and Predict Risk Factors for the Severity of COVID-19.

Medical science monitor : international medical journal of experimental and clinical research
Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes coronavirus disease 2019 (COVID-19) commonly presents with pneumonia. However, COVID-19 is now recognized to involve multiple organ systems with varying severity ...

Machine learning for detection of stenoses and aneurysms: application in a physiologically realistic virtual patient database.

Biomechanics and modeling in mechanobiology
This study presents an application of machine learning (ML) methods for detecting the presence of stenoses and aneurysms in the human arterial system. Four major forms of arterial disease-carotid artery stenosis (CAS), subclavian artery stenosis (SAS...

Automated machine learning optimizes and accelerates predictive modeling from COVID-19 high throughput datasets.

Scientific reports
COVID-19 outbreak brings intense pressure on healthcare systems, with an urgent demand for effective diagnostic, prognostic and therapeutic procedures. Here, we employed Automated Machine Learning (AutoML) to analyze three publicly available high thr...

Automated Measurements of Body Composition in Abdominal CT Scans Using Artificial Intelligence Can Predict Mortality in Patients With Cirrhosis.

Hepatology communications
Body composition measures derived from already available electronic medical records (computed tomography [CT] scans) can have significant value, but automation of measurements is needed for clinical implementation. We sought to use artificial intelli...

A fusion decision system to identify and grade malnutrition in cancer patients: Machine learning reveals feasible workflow from representative real-world data.

Clinical nutrition (Edinburgh, Scotland)
BACKGROUND AND AIMS: Most nutritional assessment tools are based on pre-defined questionnaires or consensus guidelines. However, it has been postulated that population data can be used directly to develop a solution for assessing malnutrition. This s...

Self-Supervised Feature Learning and Phenotyping for Assessing Age-Related Macular Degeneration Using Retinal Fundus Images.

Ophthalmology. Retina
OBJECTIVE: Diseases such as age-related macular degeneration (AMD) are classified based on human rubrics that are prone to bias. Supervised neural networks trained using human-generated labels require labor-intensive annotations and are restricted to...

A machine learning based exploration of COVID-19 mortality risk.

PloS one
Early prediction of patient mortality risks during a pandemic can decrease mortality by assuring efficient resource allocation and treatment planning. This study aimed to develop and compare prognosis prediction machine learning models based on invas...