AIMC Topic: Support Vector Machine

Clear Filters Showing 111 to 120 of 4695 articles

Pseudotargeted metabolomics profiles potential damage-associated molecular patterns as machine learning predictors for acute pancreatitis.

Journal of pharmaceutical and biomedical analysis
Acute pancreatitis (AP) is a common gastrointestinal disease characterized by pancreatic cell damage and inflammation. Given the early clinical diagnosis and management challenges, exploring novel analytical frameworks from new orientations for inter...

CNN-LSTM based emotion recognition using Chebyshev moment and K-fold validation with multi-library SVM.

PloS one
Human emotions are not necessarily tends to produce right facial expressions as there is no well defined connection between them. Although, human emotions are spontaneous, their facial expressions depend a lot on their mental and psychological capaci...

Longitudinal study on the impact of short-term radiological interpretation training on resting-state brain network hubs.

Trends in neuroscience and education
Radiological expertise develops through extensive experience in specific imaging modalities. While previous research has focused on long-term learning and neural mechanisms of expertise, the effects of short-term radiological training on resting-stat...

A quantum inspired machine learning approach for multimodal Parkinson's disease screening.

Scientific reports
Parkinson's disease, currently the fastest-growing neurodegenerative disorder globally, has seen a 50% increase in cases within just two years. As disease progression impairs speech, memory, and motor functions over time, early diagnosis is crucial f...

Identification of Crohn's Disease-Related Biomarkers and Pan-Cancer Analysis Based on Machine Learning.

Mediators of inflammation
: In recent years, the incidence of Crohn's disease (CD) has shown a significant global increase, with numerous studies demonstrating its correlation with various cancers. This study aims to identify novel biomarkers for diagnosing CD and explore the...

Effects of Renal Function on the Multimodal Brain Networks Affecting Mild Cognitive Impairment Converters in End-Stage Renal Disease.

Academic radiology
RATIONALE AND OBJECTIVES: Cognitive decline is common in End-Stage Renal Disease (ESRD) patients, yet its neural mechanisms are poorly understood. This study investigates structural and functional brain network reconfiguration in ESRD patients transi...

Predicting cell cycle stage from 3D single-cell nuclear-stained images.

Life science alliance
The cell cycle governs the proliferation of all eukaryotic cells. Profiling cell cycle dynamics is therefore central to basic and biomedical research. However, current approaches to cell cycle profiling involve complex interventions that may confound...

Predicting and investigating water quality index by robust machine learning methods.

Journal of environmental management
This study addresses the critical challenges of waste management and water quality in urban environments, where accelerated urbanization has exacerbated environmental degradation and public health risks. Employing advanced machine learning algorithms...

Finger Vein Recognition Based on Unsupervised Spiking Convolutional Neural Network with Adaptive Firing Threshold.

Sensors (Basel, Switzerland)
Currently, finger vein recognition (FVR) stands as a pioneering biometric technology, with convolutional neural networks (CNNs) and Transformers, among other advanced deep neural networks (DNNs), consistently pushing the boundaries of recognition acc...

Combining High-Throughput Screening and Machine Learning to Predict the Formation of Both Binary and Ternary Amorphous Solid Dispersion Formulations for Early Drug Discovery and Development.

Pharmaceutical research
OBJECTIVE: Amorphous solid dispersion (ASD) is widely utilized to enhance the solubility and bioavailability of water-insoluble drugs. However, conventional experimental approaches for ASD development are often resource-intensive and time-consuming. ...