AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Time Factors

Showing 131 to 140 of 1859 articles

Clear Filters

Machine learning for predicting in-hospital mortality in elderly patients with heart failure combined with hypertension: a multicenter retrospective study.

Cardiovascular diabetology
BACKGROUND: Heart failure combined with hypertension is a major contributor for elderly patients (≥ 65 years) to in-hospital mortality. However, there are very few models to predict in-hospital mortality in such elderly patients. We aimed to develop ...

TV-Net: Temporal-Variable feature harmonizing Network for multivariate time series classification and interpretation.

Neural networks : the official journal of the International Neural Network Society
Multivariate time series classification (MTSC), which identifies categories of multiple sensor signals recorded in continuous time, is widely used in various fields such as transportation, finance, and medical treatment. The focused challenge remains...

Prognostic Significance and Associations of Neural Network-Derived Electrocardiographic Features.

Circulation. Cardiovascular quality and outcomes
BACKGROUND: Subtle, prognostically important ECG features may not be apparent to physicians. In the course of supervised machine learning, thousands of ECG features are identified. These are not limited to conventional ECG parameters and morphology. ...

Comparison of different acceleration factors of artificial intelligence-compressed sensing for brachial plexus MRI imaging: scanning time and image quality.

BMC medical imaging
BACKGROUND: 3D brachial plexus MRI scanning is prone to examination failure due to the lengthy scan times, which can lead to patient discomfort and motion artifacts. Our purpose is to investigate the efficacy of artificial intelligence-assisted compr...

Understanding and modeling human-AI interaction of artificial intelligence tool in radiation oncology clinic using deep neural network: a feasibility study using three year prospective data.

Physics in medicine and biology
Artificial intelligence (AI) based treatment planning tools are being implemented in clinic. However, human interactions with such AI tools are rarely analyzed. This study aims to comprehend human planner's interaction with the AI planning tool and i...

[Incidence and determinants of viral load rebound in people receiving multi-month dispensing of antiretroviral therapy at the Regional Annex Hospital of Dschang from 2018-2023].

The Pan African medical journal
INTRODUCTION: in Cameroon, multi-month dispensing (MMD) of antiretrovirals (ARVs) was introduced to improve treatment adherence among people living with HIV (PLHIV). However, this strategy has limitations that may lead to viral load rebound. The purp...

Automated assessment of brain MRIs in multiple sclerosis patients significantly reduces reading time.

Neuroradiology
INTRODUCTION: Assessment of multiple sclerosis (MS) lesions on magnetic resonance imaging (MRI) is tedious, time-consuming, and error-prone. We evaluate whether assessment of new, expanding, and contrast-enhancing MS lesions can be done more time-eff...

Anchoring temporal convolutional networks for epileptic seizure prediction.

Journal of neural engineering
. Accurate and timely prediction of epileptic seizures is crucial for empowering patients to mitigate their impact or prevent them altogether. Current studies predominantly focus on short-term seizure predictions, which causes the prediction time to ...

Ab initio characterization of protein molecular dynamics with AIBMD.

Nature
Biomolecular dynamics simulation is a fundamental technology for life sciences research, and its usefulness depends on its accuracy and efficiency. Classical molecular dynamics simulation is fast but lacks chemical accuracy. Quantum chemistry methods...

Global practical finite-time synchronization of disturbed inertial neural networks by delayed impulsive control.

Neural networks : the official journal of the International Neural Network Society
This paper delves into the practical finite-time synchronization (FTS) problem for inertial neural networks (INNs) with external disturbances. Firstly, based on Lyapunov theory, the local practical FTS of INNs with bounded external disturbances can b...