AIMC Topic: Time Factors

Clear Filters Showing 51 to 60 of 1901 articles

Dynamic graph-based bilateral recurrent imputation network for multivariate time series.

Neural networks : the official journal of the International Neural Network Society
Multivariate time series imputation using graph neural networks (GNNs) has gained significant attention, where the variables and their correlations are depicted as the graph nodes and edges, offering a structured way to understand the intricacies of ...

Learning from leading indicators to predict long-term dynamics of hourly electricity generation from multiple resources.

Neural networks : the official journal of the International Neural Network Society
Electricity is generated through various resources and then flows between regions via a complex system (grid). Imbalances in electricity generation can lead to the waste of renewable energy. As renewable energy is becoming a larger part of the grid, ...

Impact of Sepsis Onset Timing on All-Cause Mortality in Acute Pancreatitis: A Multicenter Retrospective Cohort Study.

Journal of intensive care medicine
BackgroundSepsis complicates acute pancreatitis (AP), increasing mortality risk. Few studies have examined how sepsis and its onset timing affect mortality in AP. This study evaluates the association between sepsis occurrence and all-cause mortality ...

Deep learning-based time-of-flight (ToF) enhancement of non-ToF PET scans for different radiotracers.

European journal of nuclear medicine and molecular imaging
AIM: To evaluate a deep learning-based time-of-flight (DLToF) model trained to enhance the image quality of non-ToF PET images for different tracers, reconstructed using BSREM algorithm, towards ToF images.

TimePAD─Unveiling Temporal Sequence ELISA Signal by Deep Learning for Rapid Readout and Improved Accuracy in a Microfluidic Paper-Based Analytical Platform.

Analytical chemistry
The integration of paper-based microfluidics with deep learning represents a pivotal trend in enhancing diagnostic capabilities. This paper introduces a new approach to improve the performance of a paper-based microfluidic enzyme-linked immunosorbent...

Learning temporal regularized spatial-aware deep correlation filter tracking via adaptive channel selection.

Neural networks : the official journal of the International Neural Network Society
In recent years, deep correlation filters have demonstrated outstanding performance in robust object tracking. Nevertheless, the correlation filters encounter challenges in managing huge occlusion, target deviation, and background clutter due to the ...

Stress hyperglycemia ratio and machine learning model for prediction of all-cause mortality in patients undergoing cardiac surgery.

Cardiovascular diabetology
BACKGROUND: The stress hyperglycemia ratio (SHR) was developed to reduce the effects of long-term chronic glycemic factors on stress hyperglycemia levels, which was associated with adverse clinical outcomes. This study aims to evaluate the relationsh...

Predicting major adverse cardiac events in diabetes and chronic kidney disease: a machine learning study from the Silesia Diabetes-Heart Project.

Cardiovascular diabetology
BACKGROUND: People living with diabetes mellitus (DM) and chronic kidney disease (CKD) are at significantly high risk of cardiovascular events (CVEs), however the predictive performance of traditional risk prediction methods are limited.

Heterogeneous boundary synchronization of time-delayed competitive neural networks with adaptive learning parameter in the space-time discretized frames.

Neural networks : the official journal of the International Neural Network Society
This article presents the master-slave time-delayed competitive neural networks in space-time discretized frames(STD-CNNs) with the heterogeneous structure, induced by the design of an adaptive learning parameter in the slave STD-CNNs. This article a...

Prediction of 90 day mortality in elderly patients with acute HF from e-health records using artificial intelligence.

ESC heart failure
AIMS: Mortality risk after hospitalization for heart failure (HF) is high, especially in the first 90 days. This study aimed to construct a model automatically predicting 90 day post-discharge mortality using electronic health record (EHR) data 48 h ...